Skip to main content

Mechanical and microstructural properties of S1100 UHSS welds obtained by EBW and MAG welding

Abstract

The microstructures and mechanical properties of welds consisting of 20-mm-thick thermo-mechanically rolled and directly quenched S1100MC ultra high-strength steel (UHSS) plates were investigated. The welds were produced by means of metal active gas (MAG) welding and electron beam welding (EBW). Different heat inputs of the welding processes influenced the microstructure and thus the mechanical properties including impact toughness, hardness, and tensile properties. The microstructure of the MAG weld obtained when using undermatched solid filler wire consisted mainly of acicular ferrite (AF), and it appeared more polygonal when the heat input exceeded 2 kJ/mm with spray arc in the filler pass. The coarse-grained heat-affected zone (CGHAZ) showed different microstructures depending on the thermal cycles of the respective welding processes. Fresh martensite formed in the CGHAZ of the last welding pass at both the bottom and the top surfaces, as there was no reheating from any subsequent pass. The microstructure obtained with EBW without any filler material consisted of martensite and tempered martensite in the fusion zone. Martensite with small prior austenite grain (PAG) size significantly increased the hardness of the fine-grained heat-affected zone (FGHAZ) compared to the CGHAZ and fusion zone. Uniaxial tensile testing of EBW specimens indicated higher tensile strength of the weld than of the base metal, as the specimens fractured at the base metal. In contrast, fracture of MAG specimens occurred at the weld. Hence, the tensile strength of the MAG weld consisting of undermatched filler metal was obviously lower than the tensile strength of the base metal. However, the ferritic MAG weld possessed higher impact toughness than the martensitic EBW weld.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Amraei M, Afkhami S, Javaheri V, Larkiola J, Skriko T, Björk T, Zhao XL (2020) Mechanical properties and microstructural evaluation of the heat-affected zone in ultra-high strength steels. Thin-Walled Struct 157:1–11. https://doi.org/10.1016/j.tws.2020.107072

    Article  Google Scholar 

  2. Qiang X, Jiang X, Bijlaard FSK, Kolstein H (2016) Mechanical properties and design recommendations of very high strength steel S960 in fire. Eng Struct 112:60–70. https://doi.org/10.1016/j.engstruct.2016.01.008

    Article  Google Scholar 

  3. Nowacki J, Sajek A, Matkowski P (2016) The influence of welding heat input on the microstructure of joints of S1100QL steel in one-pass welding. Arch Civ Mech Eng 16:777–783. https://doi.org/10.1016/j.acme.2016.05.001

    Article  Google Scholar 

  4. Mičian M, Harmaniak D, Nový F, Winczek J, Moravec J, Trško L (2020) Effect of the t8/5 cooling time on the properties of S960MC steel in the HAZ of welded joints evaluated by thermal physical simulation. Metals (Basel) 10:18. https://doi.org/10.3390/met10020229

    CAS  Article  Google Scholar 

  5. Węglowski MS, Błacha S, Dymek S, Kopyściański M (2017) Electron beam welding of high strength quenched and tempered steel. Mater Sci Forum 879:2078–2083. https://doi.org/10.4028/www.scientific.net/MSF.879.2078

    Article  Google Scholar 

  6. Schaupp T, Schroepfer D, Kromm A, Kannengiesser T (2014) Welding residual stress distribution of quenched and tempered and thermo-mechanically hot rolled high strength steels. Adv Mater Res 996(457):462. https://doi.org/10.4028/www.scientific.net/AMR.996.457

    Article  Google Scholar 

  7. Sun J, Wei S, Lu S (2020) Influence of vanadium content on the precipitation evolution and mechanical properties of high-strength Fe–Cr–Ni–Mo weld metal. Mater Sci Eng A 772:138739. https://doi.org/10.1016/j.msea.2019.138739

    CAS  Article  Google Scholar 

  8. An T, Wei J, Zhao L, Shan J, Tian Z (2019) Influence of carbon content on microstructure and mechanical properties of 1000 MPa deposited metal by gas metal arc welding. J Iron Steel Res Int 26(512):518. https://doi.org/10.1007/s42243-019-00270-6

    CAS  Article  Google Scholar 

  9. Haslberger P, Ernst W, Schneider C, Holly S, Schnitzer R (2018) Influence of inhomogeneity on several length scales on the local mechanical properties in V-alloyed all-weld metal. Weld World 62:1153–1158. https://doi.org/10.1007/s40194-018-0636-0

    CAS  Article  Google Scholar 

  10. Laitila J, Larkiola J (2019) Effect of enhanced cooling on mechanical properties of a multipass welded martensitic steel. Weld World 63:637–646. https://doi.org/10.1007/s40194-018-00689-7

    CAS  Article  Google Scholar 

  11. Sun Q, Di HS, Li JC, Wu BQ, Misra RDK (2016) A comparative study of the microstructure and properties of 800 MPa microalloyed C-Mn steel welded joints by laser and gas metal arc welding. Mater Sci Eng A 669:150–158. https://doi.org/10.1016/j.msea.2016.05.079

    CAS  Article  Google Scholar 

  12. Guo W, Crowther D, Francis JA, Björk T, Heidarpour A, Zhao XL (2015) Microstructure and mechanical properties of laser welded S960 high strength steel. Mater Des 85:534–548. https://doi.org/10.1016/j.matdes.2015.07.037

    CAS  Article  Google Scholar 

  13. Amraei M, Ahola A, Afkhami S, Björk T, Heidarpour A, Zhao XL (2019) Effects of heat input on the mechanical properties of butt-welded high and ultra-high strength steels. Eng Struct 198:109460. https://doi.org/10.1016/j.engstruct.2019.109460

    Article  Google Scholar 

  14. Błacha S, Wȩglowski MS, Dymek S, Kopuściański M (2016) Microstructural characterization and mechanical properties of electron beam welded joint of high strength steel grade S690QL. Arch Metall Mater 61:1193–1200. https://doi.org/10.1515/amm-2016-0198

    CAS  Article  Google Scholar 

  15. Agrawal BP, Ghosh PK (2017) Characteristics of extra narrow gap weld of HSLA steel welded by single-seam per layer pulse current GMA weld deposition. J Mater Eng Perform 26:1365–1381. https://doi.org/10.1007/s11665-017-2516-y

    CAS  Article  Google Scholar 

  16. Schaupp T, Rhode M, Kannengiesser T (2018) Influence of welding parameters on diffusible hydrogen content in high-strength steel welds using modified spray arc process. Weld World 62:9–18. https://doi.org/10.1007/s40194-017-0535-9

    CAS  Article  Google Scholar 

  17. Wȩglowski MS, Błacha S, Phillips A (2016) Electron beam welding-techniques and trends-review. Vacuum 130:72–92. https://doi.org/10.1016/j.vacuum.2016.05.004

    CAS  Article  Google Scholar 

  18. Guo W, Li L, Dong S, Crowther D, Thompson A (2017) Comparison of microstructure and mechanical properties of ultra-narrow gap laser and gas-metal-arc welded S960 high strength steel. Opt Lasers Eng 91:1–15. https://doi.org/10.1016/j.optlaseng.2016.11.011

    Article  Google Scholar 

  19. Schneider C, Ernst W, Schnitzer R, Staufer H, Vallant R, Enzinger N (2018) Welding of S960MC with undermatching filler material. Weld World 62:801–809. https://doi.org/10.1007/s40194-018-0570-1

    CAS  Article  Google Scholar 

  20. Xu J, Peng Y, Guo S, Zhou Q, Zhu J, Li X (2019) Softening behavior of electron beam welded 22SiMn2TiB steel. J Mater Eng Perform 28:6669–6681. https://doi.org/10.1007/s11665-019-04366-8

    CAS  Article  Google Scholar 

  21. Cui J, Zhu W, Chen Z, Chen L (2020) Effect of simulated cooling time on microstructure and toughness of CGHAZ in novel high-strength low-carbon construction steel. Sci Technol Weld Join 25:169–177. https://doi.org/10.1080/13621718.2019.1661116

    CAS  Article  Google Scholar 

  22. Qi X, Di H, Wang X, Liu Z, Misra RDK, Huan P, Gao Y (2020) Effect of secondary peak temperature on microstructure and toughness in ICCGHAZ of laser-arc hybrid welded X100 pipeline steel joints. J Mater Res Technol 9:7838–7849. https://doi.org/10.1016/j.jmrt.2020.05.016

    CAS  Article  Google Scholar 

  23. Keehan E, Zachrisson J, Karlsson L (2010) Influence of cooling rate on microstructure and properties of high strength steel weld metal. Sci Technol Weld Join 15:233–238. https://doi.org/10.1179/136217110X12665048207692

    CAS  Article  Google Scholar 

  24. Kovács J, Lukács J (2021) Effect of the welding thermal cycles based on simulated heat affected zone of S1300 ultrahigh strength steel. Key Eng Mater 890:33–43. https://doi.org/10.4028/www.scientific.net/KEM.890.33

    Article  Google Scholar 

  25. Sisodia RPS, Gáspár M, Sepsi M, Mertinger V (2021) Comparative evaluation of residual stresses in vacuum electron beam welded high strength steel S960QL and S960M butt joints. Vacuum 184:1–5. https://doi.org/10.1016/j.vacuum.2020.109931

    CAS  Article  Google Scholar 

  26. Voestalpine Steel (2019) Superior solutions in high-strength and ultra-high strength TM steel. Data Sheet

  27. Böhler Welding (2014) BÖHLER alform® 960-IG Solid wire, high strength. Data sheet

  28. Tümer M, Warchomicka FG, Pahr H, Enzinger N (2022) Mechanical and microstructural characterization of solid wire undermatched multilayer welded S1100MC in different positions. J Manuf Process 73:849–860. https://doi.org/10.1016/j.jmapro.2021.11.021

    Article  Google Scholar 

  29. Tümer M, Domitner J, Enzinger N (2021) Electron beam and metal active gas welding of ultra-high-strength steel S1100MC: influence of heat input. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-021-08055-6

    Article  Google Scholar 

  30. Tümer M, Pixner F, Enzinger N (2021) Residual stresses, microstructure and mechanical properties on electron beam welded S1100 steel. J Mater Eng Perform. https://doi.org/10.1007/s11665-021-06348-1

    Article  Google Scholar 

  31. DIN EN ISO 9016 (2012) Destructive tests on welds in metallic materials-ımpact tests-test specimen location, notch orientation and examination. Europen Committee for Standardization

  32. DIN EN ISO 6892–1 (2016) Metallic materials-tensile testing-part 1: method to test at room temperature. Europen Committee for Standardization

  33. voestalpine Grobblech GmbH (2020) High-strength and ultra-high-strength thermomechanically rolled fine-grained steels - Technical terms of delivery for heavy plates. Data sheet

  34. Kim B, Uhm S, Lee C, Lee J, An Y (2005) Effects of inclusions and microstructures on impact energy of high heat-input submerged-arc-weld metals. J Eng Mater Technol 127:204–213. https://doi.org/10.1115/1.1857933

    CAS  Article  Google Scholar 

  35. Alipooramirabad H, Ghomashchi R, Paradowska A, Reid M (2016) Residual stress-microstructure-mechanical property interrelationships in multipass HSLA steel welds. J Mater Process Technol 231:456–467. https://doi.org/10.1016/j.jmatprotec.2016.01.020

    CAS  Article  Google Scholar 

  36. Wang XL, Wang XM, Shang CJ, Misra RDK (2016) Characterization of the multi-pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness. Mater Sci Eng A 649:282–292. https://doi.org/10.1016/j.msea.2015.09.030

    CAS  Article  Google Scholar 

  37. Khodir S, Shibayanagi T, Takahashi M, Abdel-Aleem H, Ikeuchi K (2014) Microstructural evolution and mechanical properties of high strength 3–9% Ni-steel alloys weld metals produced by electron beam welding. Mater Des 60:391–400. https://doi.org/10.1016/j.matdes.2014.03.056

    CAS  Article  Google Scholar 

  38. Navarro-López A, Hidalgo J, Sietsma J, Santofimia MJ (2017) Characterization of bainitic/martensitic structures formed in isothermal treatments below the Ms temperature. Mater Charact 128:248–256. https://doi.org/10.1016/j.matchar.2017.04.007

    CAS  Article  Google Scholar 

  39. Gáspár M, Balogh A, Sas I (2015) Physical simulation aided process optimisation aimed sufficient HAZ toughness for quenched and tempered AHSS. IIW International Conference High-Strength Materials - Challenges and Applications

  40. Li X, Shang C, Ma X, Subramanian SV, Misra RDK, Sun J (2018) Structure and crystallography of martensite–austenite constituent in the intercritically reheated coarse-grained heat affected zone of a high strength pipeline steel. Mater Charact 138:107–112. https://doi.org/10.1016/j.matchar.2018.01.042

    CAS  Article  Google Scholar 

  41. Afkhami S (2018) Investigation on the weldability of cold-formed ultra-high strength steels S700mc and S1100. Lappeenranta University of Technology

  42. Wang XL, Nan YR, Xie ZJ, Tsai YT, Yang JR, Shang CJ (2017) Influence of welding pass on microstructure and toughness in the reheated zone of multi-pass weld metal of 550 MPa offshore engineering steel. Mater Sci Eng A 702:196–205. https://doi.org/10.1016/j.msea.2017.06.081

    CAS  Article  Google Scholar 

  43. Li X, Ma X, Subramanian SV, Shang C, Misra RDK (2014) Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700MPa high strength linepipe steel. Mater Sci Eng A 616:141–147. https://doi.org/10.1016/j.msea.2014.07.100

    CAS  Article  Google Scholar 

  44. Li X, Shang C, Ma X, Gault B, Subramanian SV, Sun J, Misra RDK (2017) Elemental distribution in the martensite–austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel. Scr Mater 139:67–70. https://doi.org/10.1016/j.scriptamat.2017.06.017

    CAS  Article  Google Scholar 

  45. Kumar S, Nath SK, Kumar V (2015) Effect of single and multiple thermal cycles on microstructure and mechanical properties of simulated HAZ in low carbon bainitic steel. Mater Perform Charact 4:365–380. https://doi.org/10.1520/MPC20150007

    CAS  Article  Google Scholar 

  46. Chen L, Nie P, Qu Z, Ojo OA, Liqian X, Zhuguo L, Huang J (2020) Influence of heat input on the changes in the microstructure and fracture behavior of laser welded 800MPa grade high-strength low-alloy steel. J Manuf Process 50:132–141. https://doi.org/10.1016/j.jmapro.2019.12.007

    Article  Google Scholar 

  47. Tasalloti H, Kah P, Martikainen J (2017) Effect of heat input on dissimilar welds of ultra high strength steel and duplex stainless steel: microstructural and compositional analysis. Mater Charact 123:29–41. https://doi.org/10.1016/j.matchar.2016.11.014

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Base metal and filler wire were provided by voestalpine Stahl Linz and voestalpine Böhler Welding, respectively. The authors would like to thank Heinz Karl Fasching, Leander Herbitschek, Zahra Silvayeh, and Fernando Gustavo Warchomicka for their assistance with the experiments.

Funding

Mustafa Tümer was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under the 2219 International Postdoctoral Research Scholarship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Tümer.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission IX-Behaviour of Metals Subjected to Welding

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tümer, M., Pixner, F., Vallant, R. et al. Mechanical and microstructural properties of S1100 UHSS welds obtained by EBW and MAG welding. Weld World 66, 1199–1211 (2022). https://doi.org/10.1007/s40194-022-01276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-022-01276-7

Keywords

  • MAG
  • EBW
  • UHSS
  • Microstructure
  • Mechanical properties
  • Strength
  • Toughness
  • Hardness