Skip to main content
Log in

Application of response surface methodology for weld strength prediction in FSSWed TRIP steel joints

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The effect of friction stir spot welding (FSSW) parameters on microstructure and mechanical properties of transformation-induced plasticity (TRIP) steel joints was investigated. The microstructure of the base metal and welding zone (stir zone, thermomechanically affected zone, and heat-affected zone) was examined using OM, SEM, EBSD, and XRD. The results of fractography of joints show that the microstructure and size of bonding ligament are the main parameters affected on the weld strength. The influence of FSSW parameters such as rotational speed, dwell time, and plunge depth on the strength of the TRIP steel joints was investigated using response surface methodology and considering bonding ligament of joints. The results of analysis of variance (ANOVA) show that the mathematical model was in good agreement with actual amounts of joints strength. Analysis of variance also determined that the plunge depth was a more effective parameter than other parameters. By optimization of the parameters, it was found that the maximum strength (9.42 kN) can be achieved by choosing of the rotational speed at 1218 rpm, dwell time at 1.65 s, and plunge depth at 0.19 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Shah U, Liu X (2019) Ultrasonic resistance welding of TRIP-780 steel. J Mater Process Technol 274:116287

    Article  CAS  Google Scholar 

  2. Mostafapour A, Ebrahimpour A (2017) The effect of two-stage heat treatment temperatures on initial and FSSWed properties of TRIP steels. Int J Iron Steel Soc Iran 14(1):1–9

    Google Scholar 

  3. Reisner G, Werner E, Kerschbaummayr P, Papst I, Fischer F (1997) The modeling of retained austenite in low-alloyed TRIP steels. JOM 49(9):62–65

    Article  CAS  Google Scholar 

  4. Vargas V, Mejía I, Baltazar-Hernández V, Maldonado C (2019) Effect of retained austenite and nonmetallic inclusions on the thermal/electrical properties and resistance spot welding nuggets of Si-containing TRIP steels. Int J Miner Metall Mater 26(1):52–63

    Article  CAS  Google Scholar 

  5. Lomholt TC, Adachi Y, Peterson J, Steel R, Pantleon K, Somers MA (2011) Microstructure characterization of friction stir spot welded TRIP steel. Adv Mater Res 409:275–280

    Article  Google Scholar 

  6. Mazzaferro C, Rosendo T, Tier M, Mazzaferro J, Dos Santos J, Strohaecker T (2015) Microstructural and mechanical observations of galvanized TRIP steel after friction stir spot welding. Mater Manuf Process 30(9):1090–1103

    Article  CAS  Google Scholar 

  7. Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, Dawes CJ (1991) Friction-stir butt welding. UK

  8. Mishra RS, De PS, Kumar N (2014) Friction stir processing. Springer

  9. Shen Z, Ding Y, Gerlich AP (2019) Advances in friction stir spot welding. Crit Rev Solid State Mater Sci 1–78

  10. Lomholt TC, Pantleon K, MA. Somers (2011) Microstructure evolution during friction stir spot welding of TRIP steel, vol. 24. DTU Mekanik, Internet: https://orbit.dtu.dk/en/publications/microstructure-evolution-during-friction-stir-spot-welding-of-tri-2. Accessed 7 Oct 2020

  11. Mostafapour A, Ebrahimpour A, Saeid T (2017) Numerical and experimental study on the effects of welding environment and input heat on properties of FSSWed TRIP steel. Int J Adv Manuf Technol 90(1–4):1131–1143

    Article  Google Scholar 

  12. Mostafapour A, Ebrahimpour A, Saeid T (2017) Finite element investigation on the effect of FSSW parameters on the size of welding subdivided zones in TRIP steels. Int J Adv Manuf Technol 88(1–4):277–289

    Article  Google Scholar 

  13. Ebrahimpour A, Mostafapour A, Samadian K (2018) Finite element and experimental investigation on the effects of temperature, strain and strain rate on microstructure and mechanical properties of FSSWed TRIP steel joints. Mater Res Express 6(1):016559

    Article  Google Scholar 

  14. Mironov S, Sato Y, Yoneyama S, Kokawa H, Fujii H, Hirano S (2018) Microstructure and tensile behavior of friction-stir welded TRIP steel. Mater Sci Eng A 717:26–33

    Article  CAS  Google Scholar 

  15. Tehrani-Moghadam H, Jafarian H, Salehi M, Eivani A (2018) Evolution of microstructure and mechanical properties of Fe-24Ni-0.3 C TRIP steel during friction stir processing. Mater Sci Eng A 718:335–344

    Article  CAS  Google Scholar 

  16. Moghadam HT, Jafarian HR (2019) Effect of heat input on the microstructure of the friction stir weldedTRIP steel joints. ZANCO J Pure Appl Sci 31(s3):324–328

    Google Scholar 

  17. Lakshminarayanan AK, Annamalai VE, Elangovan K (2015) Identification of optimum friction stir spot welding process parameters controlling the properties of low carbon automotive steel joints. J Mater Res Tecnol 4(3):262–272

    Article  CAS  Google Scholar 

  18. Archish R, Lakshminarayanan A, Annamalai V (2015) Optimum welding conditions for dissimilar spot friction joining of Aluminium-Interstitial free steel joints. Appl Mech Mater 787:396–400 Trans Tech Publ

    Article  Google Scholar 

  19. Karthikeyan R, Balasubramanian V (2010) Predictions of the optimized friction stir spot welding process parameters for joining AA2024 aluminum alloy using RSM. Int J Adv Manuf Technol 51(1–4):173–183

    Article  Google Scholar 

  20. Manickam S, Balasubramanian V (2016) Optimizing the friction stir spot welding parameters to attain maximum strength in dissimilar joints of aluminum and carbon steel. Int J Mater Form Mach Process (IJMFMP) 3(2):64–76

    Google Scholar 

  21. Klobčar D, Tušek J, Smolej A, Simončič S (2015) Parametric study of FSSW of aluminium alloy 5754 using a pinless tool. Weld World 59(2):269–281

    Article  Google Scholar 

  22. Sundaram M, Visvalingam B (2016) Optimizing the friction stir spot welding parameters to attain maximum strength in Al/Mg dissimilar joints. Journal of Welding and Joining 34(3):23–30

    Article  Google Scholar 

  23. Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wiley Interdiscip Rev: Comput Stat 2(2):128–149

    Article  Google Scholar 

  24. J. O. Andersson, T. Helander, L. Höglund, P. F. Shi, and B. Sundman (2002) Thermo-Calc. vol. 26. Calphad ed. Computational tools for materials science

  25. Girault E (1998) Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels. Mater Charact 40(2):111–118

    Article  CAS  Google Scholar 

  26. Mazzaferro C (2008) FSSW of TRIP 800; process, microstructure and properties. Ph.D, Universidade Federal Do Rio Grande Do Sul

  27. Lomholt TC (2011) Microstructure evolution during friction stir spot welding of TRIP steel. Ph.D, Department of Mechanical Engineering, Technical University of Denmark, Denmark

  28. (2010) E975-03, E975-03

  29. Shena YF, Qiu LN, Sun X, Zuo L, Liawc PK, Raabe D (2015) Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nano structured TRIP-assisted steels. Mater Sci Eng A 636:551–564

    Article  Google Scholar 

  30. Girault E, Mertens A, Jacques P, Houbaert Y, Verlinden B, Humbeeck JV (2001) Comparison of the effects of silicon and aluminium on the tensile behaviour of multiphase TRIP-assisted steels. ScriptaMaterialia 44(6):885–892

    CAS  Google Scholar 

  31. Sinha AK (2002) Physical metallurgy handbook. McGraw-Hill

  32. Ion J, Easterling KE, Ashby M (1984) A second report on diagrams of microstructure and hardness for heat-affected zones in welds. Acta Metall 32(11):1949–1962

    Article  CAS  Google Scholar 

  33. Zhu L-J, Di W, Zhao X-M (2007) Recrystallization modelling of hot deformed Si-Mn TRIP steel. J Iron Steel Res Int 14(2):61–65

    Article  CAS  Google Scholar 

  34. Hidalgo J, Santofimia MJ (2016) Effect of prior austenite grain size refinement by thermal cycling on the microstructural features of as-quenched lath martensite. Metall Mater Trans A, 1–14

  35. Bhadeshia H, Svensson L (1997) Mathematical modelling of weld phenomena III, Institute of Materials, vol 229, London

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ebrahimpour.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III - Resistance Welding, Solid State Welding, and Allied Joining Process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimpour, A., Mostafapour, A. & Nakhaei, M.R. Application of response surface methodology for weld strength prediction in FSSWed TRIP steel joints. Weld World 65, 183–198 (2021). https://doi.org/10.1007/s40194-020-01008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-020-01008-9

Keywords

Navigation