Skip to main content
Log in

Investigation of friction stir welding process applied to ASTM 572 steel plate cladded with Inconel®625

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

This study investigates friction stir welding (FSW) in the dissimilar joining process of cladded plates. Samples of 4-mm thick ASTM 572 steel plate cladded with 3-mm thick Inconel®625 represent the base material. In order to limit mixing between the dissimilar materials to keep the corrosion resistance, a two-pass welding procedure was applied. Optimal welding parameters for each pass were identified. The welded specimens were evaluated by light microscopy, SEM equipped with EDS, and mechanical tests such as hardness, bending, and tensile testing. Defect-free joints with excellent surface finish have been obtained with a well-defined interfacial region between both materials. The FSW process changed the microstructure of both metals used in this study to a new refined grain region into the weld with complex microstructure inside the ASTM 572 steel, as well as change from a dendritic to an equiaxial microstructure in the Inconel®625. The breaking and the distribution of the intermetallic and secondary phases of the nickel alloy were promoted by the FSW process, moreover the second welding pass on the Inconel® tempered the steel which had previously been welded in the first FSW weld pass. The mechanical properties within the welding zone increased due to this microstructural rearrangement coupled with the Hall-Petch effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. DuPont JN, Lippold JC, Kiser SD (2009) Welding metallurgy and weldability of nickel-base alloys. John Wiley & Sons Inc, Hoboken, NJ

    Book  Google Scholar 

  2. Song KH, Nakata K (2010) Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding. Mater Des 31:2942–2947. https://doi.org/10.1016/j.matdes.2009.12.020

    Article  CAS  Google Scholar 

  3. Rodriguez J, Ramirez AJ (2015) Microstructural characterisation of friction stir welding joints of mild steel to Ni-based alloy 625. Mater Charact 110:126–135. https://doi.org/10.1016/j.matchar.2015.10.023

    Article  CAS  Google Scholar 

  4. Silva CC, Afonso CRM, Ramirez AJ, Motta MF, Miranda HC, Farias JP (2016) Assessment of microstructure of alloy Inconel 686 dissimilar weld claddings. J Alloys Compd 684:628–642. https://doi.org/10.1016/j.jallcom.2016.05.231

    Article  CAS  Google Scholar 

  5. Lloyd AC, Noël JJ, McIntyre S, Shoesmith DW (2004) Cr, Mo and W alloying additions in Ni and their effect on passivity. Electrochim Acta 49:3015–3027. https://doi.org/10.1016/j.electacta.2004.01.061

    Article  CAS  Google Scholar 

  6. Xu LY, Jing HY, Han YD (2018) Effect of welding on the corrosion behavior of X65/Inconel 625 in simulated solution. Weld World 62:363–375. https://doi.org/10.1007/s40194-018-0549-y

    Article  CAS  Google Scholar 

  7. Lemos GVB, Hanke S, Dos Santos JF, Bergmann L, Reguly A, Strohaecker TR (2017) Progress in friction stir welding of Ni alloys. Sci Technol Weld Join 22:643–657. https://doi.org/10.1080/13621718.2017.1288953

    Article  CAS  Google Scholar 

  8. DNV-OS-F101 (2013) DNV-OS-F101: submarine pipeline systems. Det Nor Verit 367. doi: DNV-OS-F101

  9. Souza RF, Ruggieri C, Zhang Z (2016) A framework for fracture assessments of dissimilar girth welds in offshore pipelines under bending. Eng Fract Mech 163:66–88. https://doi.org/10.1016/j.engfracmech.2016.06.011

    Article  Google Scholar 

  10. Chong TVS, Kumar SB, Lai MO, Loh WL (2016) Effects of elevated temperatures on the mechanical properties of nickel-based alloy clad pipelines girth welds. Eng Fract Mech 152:174–192. https://doi.org/10.1016/j.engfracmech.2015.11.003

    Article  Google Scholar 

  11. Sulaiman NS, Tan H (2014) Third party damages of offshore pipeline. J Energy Challenges Mech 1:1–6

    Google Scholar 

  12. DNV (2003) Classification of ships/high speed. Light Craft and Surface Craft. Det Norske Veritas, Høvik, p 43

    Google Scholar 

  13. Xu LY, Li M, Jing HY, Han YD (2013) Electrochemical behavior of corrosion resistance of X65/Inconel 625 welded joints. Int J Electrochem Sci 8:2069–2079

    CAS  Google Scholar 

  14. Maltin CA, Galloway AM, Mweemba M (2014) Microstructural evolution of Inconel 625 and Inconel 686CPT weld metal for clad carbon steel linepipe joints: a comparator study: the effect of iron dilution on the elemental segregation of alloying elements in nickel based filler metals. Metall Mater Trans A Phys Metall Mater Sci 45:3519–3532. https://doi.org/10.1007/s11661-014-2308-z

    Article  CAS  Google Scholar 

  15. Dutra JC, Silva RHG e, Marques C, Viviani AB (2016) A new approach for MIG/MAG cladding with Inconel 625. Weld World 60:1201–1209. https://doi.org/10.1007/s40194-016-0371-3

    Article  CAS  Google Scholar 

  16. Mortezaie A, Shamanian M (2014) An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel. Int J Press Vessel Pip 116:37–46. https://doi.org/10.1016/j.ijpvp.2014.01.002

    Article  CAS  Google Scholar 

  17. Anbarasan N, Jerome S, Arivazhagan N (2019) Argon and argon-hydrogen shielding gas effects on the laves phase formation and corrosion behavior of Inconel 718 gas tungsten arc welds. J Mater Process Technol 263:374–384. https://doi.org/10.1016/j.jmatprotec.2018.07.038

    Article  CAS  Google Scholar 

  18. Petrzak P, Kowalski K, Blicharski M (2016) Analysis of phase transformations in Inconel 625 alloy during annealing. Acta Phys Pol A 130:1041–1044. https://doi.org/10.12693/APhysPolA.130.1041

    Article  CAS  Google Scholar 

  19. Mills WJ (1984) Effect of heat treatment on the tensile and fracture toughness behavior of alloy 718 weldments. Weld J 8:237–245

  20. Paventhan R, Lakshminarayanan PR, Balasubramanian V (2011) Prediction and optimization of friction welding parameters for joining aluminium alloy and stainless steel. Trans Nonferrous Met Soc China (English Ed) 21:1480–1485. https://doi.org/10.1016/S1003-6326(11)60884-4

    Article  CAS  Google Scholar 

  21. Liu X, Lan S, Ni J (2014) Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel. Mater Des 59:50–62. https://doi.org/10.1016/j.matdes.2014.02.003

    Article  CAS  Google Scholar 

  22. Zheng Q, Feng X, Shen Y, Huang G, Zhao P (2017) Effect of plunge depth on microstructure and mechanical properties of FSW lap joint between aluminum alloy and nickel-base alloy. J Alloys Compd 695:952–961. https://doi.org/10.1016/j.jallcom.2016.10.213

    Article  CAS  Google Scholar 

  23. Wu AP, Song ZH, Nakata K, Liao JS (2013) Defects and the properties of the dissimilar materials FSW joints of titanium alloy TC4 with aluminum alloy 6061. Proc 1st Int Jt Symp Join Weld:243–248. https://doi.org/10.1533/978-1-78242-164-1.243

  24. Kar A, Suwas S, Kailas SV (2018) Two-pass friction stir welding of aluminum alloy to titanium alloy: a simultaneous improvement in mechanical properties. Mater Sci Eng A 733:199–210. https://doi.org/10.1016/j.msea.2018.07.057

    Article  CAS  Google Scholar 

  25. Kasai H, Morisada Y, Fujii H (2015) Dissimilar FSW of immiscible materials: steel/magnesium. Mater Sci Eng A 624:250–255. https://doi.org/10.1016/j.msea.2014.11.060

    Article  CAS  Google Scholar 

  26. Coelho RS, Kostka A, dos Santos JF, Kaysser-Pyzalla A (2012) Friction-stir dissimilar welding of aluminium alloy to high strength steels: mechanical properties and their relation to microstructure. Mater Sci Eng A 556:175–183. https://doi.org/10.1016/j.msea.2012.06.076

    Article  CAS  Google Scholar 

  27. Kundu S, Roy D, Bhola R, Bhattacharjee D, Mishra B, Chatterjee S (2013) Microstructure and tensile strength of friction stir welded joints between interstitial free steel and commercially pure aluminium. Mater Des 50:370–375. https://doi.org/10.1016/j.matdes.2013.02.017

    Article  CAS  Google Scholar 

  28. Guo L, Zheng H, Liu S et al (2016) Effect of heat treatment temperatures on microstructure and corrosion properties of Inconel 625 weld overlay deposited by PTIG. Int J Electrochem Sci 11:5507–5519. https://doi.org/10.20964/2016.07.97

    Article  CAS  Google Scholar 

  29. Zareie Rajani HR, Akbari Mousavi SAA, Madani Sani F (2013) Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates. Mater Des 43:467–474. https://doi.org/10.1016/j.matdes.2012.06.053

    Article  CAS  Google Scholar 

  30. Banovic SW, DuPont JN, Marder AR (2002) Dilution and microsegregation in dissimilar metal welds between super austenitic stainless steel and nickel base alloys. Sci Technol Weld Join 7:374–383. https://doi.org/10.1179/136217102225006804

    Article  CAS  Google Scholar 

  31. Da Cunha PHCP, Lemos GVB, Bergmann L et al (2019) Effect of welding speed on friction stir welds of GL E36 shipbuilding steel. J Mater Res Technol 8:1041–1051. https://doi.org/10.1016/j.jmrt.2018.07.014

    Article  CAS  Google Scholar 

  32. Lemos GVB, Farina AB, Martinazzi D, et al (2016) Efeito da Velocidade de Rotação da Ferramenta na Soldagem por Fricção e Mistura Mecânica da Liga Inconel 625. In: ABM (ed) 71o Congresso Anual da ABM – Internacional. Rio de Janeiro, pp 1387–1395

  33. DIN EN ISO - 4136:2011–05 (2013) Destructive tests on welds in metallic materials – Transverse tensile test

  34. Kim JS, Lee HW (2016) Effect of welding heat input on microstructure and texture of Inconel 625 weld overlay studied using the electron backscatter diffraction method. Metall Mater Trans A Phys Metall Mater Sci 47:6109–6120. https://doi.org/10.1007/s11661-016-3754-6

    Article  CAS  Google Scholar 

  35. Silva CC, de Albuquerque VHC, Miná EM, Moura EP, Tavares JMRS (2018) Mechanical properties and microstructural characterization of aged nickel-based alloy 625 weld metal. Metall Mater Trans A Phys Metall Mater Sci 49:1653–1673. https://doi.org/10.1007/s11661-018-4526-2

    Article  CAS  Google Scholar 

  36. Reynolds AP, Posada WTM, Deloach J (2003) Friction stir welding of DH-36 steel. Sci Technol Weld Join 8:455–460. https://doi.org/10.1179/136217103225009125

    Article  Google Scholar 

  37. Sundararaman M, Mukhopadhyay P, Banerjee S (1997) Carbide precipitation in nickel base superalloys 718 and 625 and their effect on mechanical properties. Miner Met Mater Soc:367–378. https://doi.org/10.7449/1997/superalloys_1997_367_378

Download references

Acknowledgments

The authors gratefully acknowledge the support given by the following laboratories: Physical Metallurgical Laboratory (LAMEF) in Brazil and Helmholtz-Zentrum Geesthacht in Germany. Also, the authors would like to thank the financial support given by the National Council for Research and Development (CNPq), Shell Brasil Petróleo Ltda, and National Agency of Petroleum, Natural Gas and Biofuel (ANP - Commitment to investment in Research and Development). BK acknowledges financial support from DAAD via funds of the Federal Ministry of Education and Research (BMBF) under project number 57446973. RML received support from CNPq via project number 205724/2017-5, and CRdLL received financial support of CAPES PROBRAL- 88881.198810/2018-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cleber Rodrigo de Lima Lessa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III - Resistance Welding, Solid State Welding, and Allied Joining Process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landell, R.M., de Lima Lessa, C.R., Bergmann, L. et al. Investigation of friction stir welding process applied to ASTM 572 steel plate cladded with Inconel®625. Weld World 65, 393–403 (2021). https://doi.org/10.1007/s40194-020-01007-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-020-01007-w

Keywords

Navigation