Skip to main content
Log in

Influence of the optical measurement technique and evaluation approach on the determination of local weld geometry parameters for different weld types

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The joining by welding processes of components is usually related to the creation of additional notches and geometrical peculiarities. Multiple investigations have shown that a clear correlation between the local weld geometry and the fatigue life of welded joints exist. Thereby, the local increase of the local stress can be expressed by a stress concentration factor at the transition from the base material to the filler material, the so-called weld toe. The stress concentration factor can be determined for the most weld types if the geometric parameters such as plate thickness weld toe radius and flank angle are known. However, no standardized method for the determination of these parameters exists. Beside the well-established 2D-measurement methods on cross sections with weld impression analysis, new 3D-methods based on contactless, optical measurement were applied in the last years for the geometrical analysis of welded joints. With these methods, long length of welds can be analyzed in a very short time and with low effort. However, the influence of the measurement system (geometrical accuracy, lateral resolution) was not quantified yet. Additionally, in all known cases of application different evaluation algorithms were used. This does not allow for a straightforward comparison of the investigated parameters and results. In this round robin study, the determination of weld toe radii and flank angles by different evaluation algorithms and 3D-measurement systems and by different institutes are compared. Furthermore, an approach for the direct determination of the stress concentration factors of fillet welds by translating the complex weld shape in a 2D-finite element simulation was implemented. The results of this direct approach are compared to the stress concentration factors determined indirectly using the geometric parameters and those calculated by established approximation formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

SAW:

Submerged arc welding

Hybrid:

Laser-hybrid-welding

MAG:

Metal active gas

SCF:

Stress concentration factor

ρ :

Weld toe radius

t 1 :

Base plate thickness

θ t :

Flank angle

t 2 :

Attachment thickness

a :

Effective weld throat thickness

s :

Root gap

κ:

Curvature

L :

Weld leg length

∆x :

Point spacing

T :

Tangent vector

K t :

Stress concentration factor

N :

Normal vector

References

  1. Hobbacher AF 2016, Recommendations for fatigue design of welded joints and components, 2th edition. Springer

  2. Europeon Commitee of Standardization 2009, “Eurocode 3: design of steel structures -Part 1–9: Fatigue, 1993-1-9:2005,”

  3. Lawrence FV (1973) Estimation of fatigue crack propagation life in butt welds. Weld J 52:213–220

    Google Scholar 

  4. Lawrence FV, Munse WH (1973) Fatigue crack propagation in butt weld containing joint penetration defects. Weld J 52:221–225

    Google Scholar 

  5. Lieurade HP, Huther I, Lefebvre F (2008) Effect of weld quality and postweld improvement techniques on the fatigue resistance of extra high strength steels. Weld World 52(7–8):106–115

    Article  CAS  Google Scholar 

  6. Ning Nguyen T, Wahab MA (1995) A theroretical study of the effect of geometry parameters on the fatigue crack propogation life. Eng Facture Mech 51(1):1–18

    Article  Google Scholar 

  7. Gurney TR (1979) Fatigue of welded structures. Cambridge Univercity Press, Cambridge

    Google Scholar 

  8. Maddox SJ (1991) Fatigue of welded structures. Abington Publishing, Cambridge

    Google Scholar 

  9. Barsoum Z, Jonsson B (2007) Fatigue assesment and LEFM analysis of cruciform joints fabricated with different welding processes. Weld World 52(7–8):93–105

    Google Scholar 

  10. Jonsson B, Samuelsson J, Marquis GB (2011) Development of weld quality criteria based on fatigue performance. Weld World 55(11–12):79–88

    Article  CAS  Google Scholar 

  11. Nykänen T, Marquis GB, Björk T (2009) A simplified fatigue assessment method for high quality welded cruciform joints. Int J Fatigue 31(1):79–87

    Article  Google Scholar 

  12. Schork B et al. 2017, “The effect of the local and global weld geometry as well as material defects on crack initiation and fatigue strength,” Eng Fract Mech.

  13. ISO 5817:2014 2014, Welding -- fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded) -- Quality levels for imperfections.

  14. V. Group, STD 181-0004, Weld Quality standard

  15. Pang HLJ (1993) Analysis of weld toe profiles and weld toe cracks. Int J Fatigue 55(1):31–36

    Article  Google Scholar 

  16. Engesvik KM, Torgeir M (1983) Probabilistic analysis of the uncertainty in the fatigue capacity of welded joints. Eng Fract Mech 18(4):743–762

    Article  Google Scholar 

  17. Alam MM, Barsoum Z, Jonsen P, Kaplan AFH, Häggblad HA (2010) The influence of surface geometry and topography on the fatigue cracking behaviour of laser hybrid welded eccentric fillet joints. Appl Surf Sci 256(6):1936–1945

    Article  CAS  Google Scholar 

  18. Stenberg T, Lindgren E, and Barsoum Z 2012, “Development of an algorithm for quality inspection of welded structures,” Proc Inst Mech Eng Part B J. Eng Manuf.

  19. Hou C-Y (2007) Fatigue analysis of welded joints with the aid of real three-dimensional weld toe geometry. Int J Fatigue 29(4):772–785

    Article  CAS  Google Scholar 

  20. Harati E, Svensson L-E, and Karlsson L 2014, “The measurement of weld toe radius using three non-destructive techniques,” Proc 6th Int Swedish Prod Symp, pp. 1–8

  21. Anthes R, Köttgen V, Seeger T (1993) Kerbformzahlen von Stumpfstößen und Doppel-T-Stößen. Schweißen und Schneid 45(12):685–688

    CAS  Google Scholar 

  22. Rainer G 1978, “Errechnen von Spannungen in Schweißverbindungen mit der Methode der Finiten Elemente,” Technical Univercity of Darmstadt

  23. Berge S (1985) On the effect of plate thickness in fatigue of welds. Eng Fract Mech 21(2):423–435

    Article  Google Scholar 

  24. Lawrence FV, Ho NJ, Munse WH (1981) Predicting the fatigue resistance of welds. Annu Rev Mater Sci 11:401–425

    Article  Google Scholar 

  25. Le C-H 2018, “Numerische Untersuchung der Genauigkeit von Approximationsformeln für Kerbformzahlen an der realen Schweißnahtgeometrie von Quersteifen,” Institute of Technology Karlsruhe

  26. Pang HLJ, Gray TGF (1993) Fatigue analysis of surface cracks at fillet welded toes. Faitgue Frac Engng Mater Struct 16(2):151–164

    Article  CAS  Google Scholar 

  27. Barsoum Z, Jonsson B (2011) Influence of weld quality on the fatigue strength in seam welds. Eng Fail Anal 18(3):971–979

    Article  Google Scholar 

  28. Lee C-H, Chang K, Jang G-C, Lee C-Y (2009) Effect of weld geometry on the fatigue life of non-load carrying fillet welded cruciform joints. Eng Fail Anal 16:849–855

    Article  CAS  Google Scholar 

  29. Lassen T 1990, “The effect of the welding process on the fatigue crack growth,” Weld J, pp. 75–82

  30. Engesvik KM and Lassen T, “The effect of weld geometry on the fatigue life,” in Procedings of the 3rd international OMAE conference

  31. Remes H 2008, “Strain-based approach to fatigue strength assessment of laser-welded joints,” Helsinki Univercity of Technolgy

  32. Tricoteaux A, Fardoun F, Degallaix S, Sauvage F (1995) Fatigue crack initiation life prediction in high strength structural steel welded joints. Faitgue Frac Engng Mater Struct 18(2):189–200

    Article  CAS  Google Scholar 

  33. Baumgartner J 2013, “Schwingfestigkeitv on Schweißverbindungen unter Berücks icht igung von Schweißeigenspannungen und Größeneinflüssen,” Fraunhofer Verlag

  34. Alam MM (2010) The influence of surface geometry and topography on the fatigue cracking behavior of laser hybrid welded eccentric fillet joints. Appl Surf Sci 256:1936–1945

    Article  CAS  Google Scholar 

  35. Kirkhope KJ, Bell R, Caron L, Basu RI, Ma K-T (1999) Weld detail fatigue life improvement techniques, Part I: review. Mar Struct 12:447–474

    Article  Google Scholar 

  36. Seshadri A 2006, “Statistical variation of weld profiles and their expected influence on fatigue strength,” Lappeenrante Univercity of Technology

  37. Harati E (2015) Fatigue strength of welds in 800 MPa yield strength steels. Univercity West, Trollhättan

    Google Scholar 

  38. Kroon D-J 2011, “2D line curvature and normals,” Mathworks. [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/32696-2d-line-curvature-and-normals

  39. Al-Kaltham M 2017, “Detektion von rissauslösenden Schwachstellen an einlagigen Schweißnähten mittels berührungsloser 3D-Vermessung,” Karlsruhe Institut of Technology

  40. Gorsitzke B, Weiß E, Rudolph J (1998) Regelwerksbasierter Ermüdungsfestigkeitsnachweiß geschweißter Druckbehälterkomponenten nach dem Kerbspannungskonzept unter Einsatz der Finiten-Elemente Methode. Tech Überwachung 30(10):33–42

    Google Scholar 

  41. Baumgartner J, Bruder T (2013) An efficient meshing approach for the calculation of notch stresses. Weld World 57(1):137–145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Farajian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XIII - Fatigue of Welded Components and Structures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schubnell, J., Jung, M., Le, C.H. et al. Influence of the optical measurement technique and evaluation approach on the determination of local weld geometry parameters for different weld types. Weld World 64, 301–316 (2020). https://doi.org/10.1007/s40194-019-00830-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-019-00830-0

Keywords

Navigation