Skip to main content

Advertisement

Log in

Development of high entropy alloys for brazing applications

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

High entropy alloys are novel and innovative metallic materials, which have intensively moved into the focus of research over the last decade. The high entropy effect in those multi-component alloys promotes the formation of a characteristic crystal structure, the random solid solution, which features unique material properties, and reduces the number of possible brittle phases. In this publication, the influence of gallium as a melting point depressant on the melting range and the microstructure of the two-phased equimolar CoCrCoFeNi were determined. In order to integrate the vacuum brazing process into the solutioning heat treatment of the nickel-based super alloy Mar-M 247 between 1180 and 1270 °C, the liquidus temperature of CoCrCoFeNi was aimed to be below 1270 °C. The changes in the melting ranges due to the modified compositions were predicted by CALPHAD simulations and verified by differential thermal analysis measurements. The promising multi-component filler alloy CoCrCuFeNiGa was determined for further investigations. For this purpose, the microstructures of the filler metal itself and the brazement were conducted. A shear strength of 388 ± 73 MPa was achieved for a brazing gap of 200 μm. The crack, which led to joint failure propagated through high-entropic, fcc-structured phases in the brazing seam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bürgel R, Jürgen Maier H, Niendorf T (2011) Handbuch Hochtemperatur- Werkstofftechnik: Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und -beschichtungen ; mit 66 Tab, 4., überarbeitete Auflage. Praxis. Vieweg+Teubner Verlag / Springer Fachmedien Wiesbaden GmbH Wiesbaden, Wiesbaden

  2. Bräunling WJG (2015) Flugzeugtriebwerke: Grundlagen, Aero-Thermodynamik, ideale und reale Kreisprozesse, thermische Turbomaschinen, Komponenten, Emissionen und Systeme, 4. Aufl. VDI-Buch. Springer Vieweg, Berlin

    Chapter  Google Scholar 

  3. Heine B (2014) Nickelbasis-Superlegierungen für Flugzeugantriebe aus metallkundlicher Sicht, Waldshut-Tiengen

  4. Çam G, Koçak M (2013) Progress in joining of advanced materials. Int Mater Rev 43(1):1–44. https://doi.org/10.1179/imr.1998.43.1.1

    Article  Google Scholar 

  5. Khorunov VF, Maksymova SV (2013) Brazing of superalloys and the intermetallic alloy (γ-TiAl). Advances in Brazing.: pp 85–120. https://doi.org/10.1533/9780857096500.2.85

    Chapter  Google Scholar 

  6. Lugscheider E, Krappitz H, Ait-Mekideche A (1984) Untersuchungen zur Duktilitaet hochtemperaturgeloeteter Verbindungen durch Kerbschlagbiegepruefung: Ductility of high-temperature brazed joints investigated using the notched bar impact bending test. Schweißen und Schneiden 36(7):304–308

    Google Scholar 

  7. Reinkensmeier I, Piegert S, Kunadt T (2013) Design criteria for high temperature brazing of burners for stationary gas turbines. In: LÖT, Internationales Kolloquium Hart- und Hochtemperaturlöten und Diffusionsschweißen, 10, International Conference Brazing, High Temperature Brazing and Diffusion Welding, 10, vol 293. Verlag für Schweißen und verwandte Verfahren, DVS-Verlag, Düsseldorf, pp 72–76

  8. Lugscheider E, Krappitz H (1986) The influence of brazing conditions on the impact strength of high-temperature brazed joints: Der Einfluss der Loetbedingungen auf die Kerbschlagzaehigkeit von Hochtemperatur-Loetverbindungen. Weld J (NY) 65(10):261–267

    Google Scholar 

  9. Tillmann W, Wojarski L, Manka M et al. (2018) Eutectic high entropy alloys—a novel class of materials for brazing applications, Proceedings from the International Brazing & Soldering Conference, 15th to 18th April 2018, New Orleans, pp 142–148

  10. Hardwick L, Rodgers P, Pickering EJ et al. (2019) Development of novel nickel-based brazing alloys, utilising alternative melting point depressants and high entropy alloy concepts, Proceedings from Brazing, high temperature brazing and diffusion bonding, 12th International Conference, 21st to 23rd May 2019, Aachen, pp 7–17

  11. Tillmann W, Wojarski L, Ulitzka T et al. (2019) Brazing of high temperature materials using melting range optimized filler metals based, Proceedings from Brazing, high temperature brazing and diffusion bonding, 12th International Conference, 21st to 23rd May 2019, Aachen, pp 1–6

  12. Cantor B, Chang ITH, Knight P et al (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375-377:213–218. https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  13. Zhang LX, Shi JM, Li HW et al (2016) Interfacial microstructure and mechanical properties of ZrB 2 SiC C ceramic and GH99 superalloy joints brazed with a Ti-modified FeCoNiCrCu high-entropy alloy. Mater Des 97:230–238. https://doi.org/10.1016/j.matdes.2016.02.055

    Article  CAS  Google Scholar 

  14. Yeh J-W (2013) Alloy design strategies and future trends in high-entropy alloys. JOM 65(12):1759–1771. https://doi.org/10.1007/s11837-013-0761-6

    Article  CAS  Google Scholar 

  15. Baldan R, da Rocha RLP, Tomasiello RB et al (2013) Solutioning and aging of MAR-M247 nickel-based superalloy. J Mater Eng Perform 22(9):2574–2579. https://doi.org/10.1007/s11665-013-0565-4

    Article  CAS  Google Scholar 

  16. Andersson J-O, Helander T, Höglund L et al (2002) Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26(2):273–312. https://doi.org/10.1016/S0364-5916(02)00037-8

    Article  CAS  Google Scholar 

  17. Gao MC, Yeh J-W, Liaw PK et al (eds) (2016) High-entropy alloys: fundamentals and applications. Springer International Publishing, Cham

    Google Scholar 

  18. Zhang Y, Zhou YJ, Lin JP et al (2008) Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater 10(6):534–538. https://doi.org/10.1002/adem.200700240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank gratefully for the supply of the base materials Mar-M 247 provided by Siemens Power and Gas Devision and especially for the support of Ingo Reinkensmeier. Furthermore, our sincere thanks go to our colleague Christian Timmer, who conducted the CALPHAD calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ulitzka.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XVII - Brazing, Soldering and Diffusion Bonding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tillmann, W., Ulitzka, T., Wojarski, L. et al. Development of high entropy alloys for brazing applications. Weld World 64, 201–208 (2020). https://doi.org/10.1007/s40194-019-00824-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-019-00824-y

Keywords

Navigation