Development and construction of AISI H11/ZrO2 joints for injection molding tools

  • W. Tillmann
  • N. B. AnarEmail author
  • M. Manka
  • L. Wojarski
  • B. Lehmert
Research Paper


Increasing demands in industrial applications and simultaneous efforts to provide long-lasting and cost-efficient tools in the injection molding industry lead to the use of metal–ceramic joints with the aim to combine the specific properties of both materials. Due to its high CTE, zirconium oxide (ZrO2) is used for the ceramic part and is joined with the tool steel AISI H11 (1.2343). In this work, suitable joining techniques with a low heat input and therefore a low thermal load are applied and characterized for the production of metal–ceramic composites. The selection of joining techniques is based on the boundary conditions during the injection molding process, in which the composites have to resist the temperature, pressure, as well as shear and tensile loads. Therefore, besides brazing, other joining processes such as gluing, screwing, shrinking, and clamping were analyzed as possible low temperature joining techniques for ceramic-metal-compounds. The best results for the tensile strengths with 90 MPa were achieved by a brazing process, carried out in vacuum with approximately 10−5 mbar, at a temperature of 920 °C for 5 min, using the commercially available brazing filler alloy CB4.


Injection molding tools Metal–ceramic composites Tool steel Zirconium oxide Joining concepts Brazing Gluing Screwing Shrinking Clamping 


Funding information

The project 16KN045825 “Entwicklung von hybriden Werkzeugeinsätzen mit Kombinationswerkstoffen aus Keramik” is funded by the VDI/VDE-Innovation + Technik GmbH within the framework of the program to promote the ZIM by the German Federal Ministry for Economic Affairs and Energy. The authors are thankful for this support.


  1. 1.
    Fernie, J. A.; Drew, R. A. L.; Knowles, K. M.: “Joining of engineering ceramics”. Int Mater Rev 54 (2009), Nr. 5, p. 283–331Google Scholar
  2. 2.
    Schwartz M (1990) Ceramic joining, 1st edn. ASM International, Materials Park, OhioGoogle Scholar
  3. 3.
    Nicklas, D.; El Gammal, A.: 2009“Anwendungsbeispiele im Maschinen- und Anlagenbau”. In: Kollenberg, W. (Hrsg.): Technische Keramik: Grundlagen - Werkstoffe - Verfahrenstechnik. 2. Auflage. Vulkan-Verlag, Essen, . – ISBN 978–3–8027–2927–7, Kapitel 5.2, p. 588–605Google Scholar
  4. 4.
    Nicholas MG (1990) Joining of ceramics. Chapman and Hall, LondonGoogle Scholar
  5. 5.
    Tietz HD (1994) Technische Keramik – Aufbau, Eigenschaften, Herstellung, Bearbeitung, Prüfung. VDI Verlag, DüsseldorfGoogle Scholar
  6. 6.
    Boretius M, Lugscheider E, Tillmann W (1995) Fügen von Hochleistungskeramik. Verfahren–Auslegung–Prüfung–Anwendung. VDI-Verlag, DüsseldorfGoogle Scholar
  7. 7.
    Kollenberg W (2009) Technische Keramik: Grundlagen - Werkstoffe - Verfahrenstechnik. 2. Auflage. Vulkan-Verlag, EssenGoogle Scholar
  8. 8.
    Salmang H, Scholze H (2007) Keramik. Springer Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  9. 9.
    Verband der Keramischen Industrie (2003) Technische Keramik. Fahner Verlag, LaufGoogle Scholar
  10. 10.
    Lugscheider E, Krappitz H, Boretius M (1987) Fügen von Hochleistungskeramik untereinander und mit Metall. Technische Mitteilungen 80:231–237Google Scholar
  11. 11.
    Haberling, E.; Ernst, C.:1999 “Einfluss der Stahlbegleitelemente Phosphor, Aluminium und Bor auf das Eigenschaftsprofil des Warmarbeitsstahls X38CrMoV5-1 (1.2343)”. Amt für amtliche Veröffentlichungen der Europäischen Gemeinschaften, LuxemburgGoogle Scholar
  12. 12.
    Werkzeug Stahl Center: Werkstoffdatenblatt 1.2343 - X38CrMoV5-1 (2017). URL: , date of download: 27.1.2017
  13. 13.
    Uddeholms AB: Uddeholm Vidar Superior (1.2343) 2013. URL: , date of download 2.2.2017
  14. 14.
    Ciftcioglu, C.:2008 “Untersuchung zur Verbundfestigkeit von Zirkonium-oxid mit verschiedenen Kompositklebern – eine In-Vitro-Studie-”, Dissertation, Universität BonnGoogle Scholar
  15. 15.
    Liu GW, Li W, Qiao GJ, Wang HJ, Yang JF, Lu TJ (2009) Microstructures and interfacial behavior of zirconia/stainless steel joint prepared by pressureless active brazing. J Alloys Compd 470:163–167CrossRefGoogle Scholar
  16. 16.
    Hanson WB, Ironside KI, Fernie JA (2000) Active metal brazing of zirconia. Acta Mater 48:4673–4676CrossRefGoogle Scholar
  17. 17.
    Hao H, Wang Y, Jin Z, Wang X (1995) Joining of zirconia ceramic to stainless steel and to itself using Ag57Cu38Ti5 filler metal. J Am Ceram Soc 78:2157–2160CrossRefGoogle Scholar
  18. 18.
    Umicore Technical Materials: BrazeTec CB4 (2017). URL: www., date of download: 05.02.2017
  19. 19.
    Xu R, Indacochea JE (1994) Reaction layer characterization of the braze joint of silicon nitride to stainless steel. J Mater Eng Perform 3:596–605CrossRefGoogle Scholar
  20. 20.
    Yano T, Suematsu H, Iseki T (1988) High-resolution electron micros-copy of a SiC/SiC joint brazed by a Ag-Cu-Ti alloy. J Mater Sci 23:3362–3366CrossRefGoogle Scholar
  21. 21.
    Boadi JK, Yano T, Iseki T (1987) Brazing of pressureless-sintered SiC using Ag-Cu-Ti alloy. J Mater Sci 22:2431–2434CrossRefGoogle Scholar

Copyright information

© International Institute of Welding 2019

Authors and Affiliations

  • W. Tillmann
    • 1
  • N. B. Anar
    • 1
    Email author
  • M. Manka
    • 1
  • L. Wojarski
    • 1
  • B. Lehmert
    • 1
  1. 1.Institute of Materials Engineering, Faculty of Mechanical EngineeringTU Dortmund UniversityDortmundGermany

Personalised recommendations