Skip to main content
Log in

Reduction in liquid metal embrittlement cracking using weld current ramping

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Advanced high-strength steels (AHSS) used in automotive structural components are commonly protected from corrosion using zinc coatings. However, the steel/zinc system creates the potential for liquid metal embrittlement (LME) during welding. Although adjustments to the welding process have been studied, the present literature has not examined the use of variable input currents for LME reduction. In this work, a ramp down welding current showed LME severity decreased by 60% compared to a standard constant current. Reductions in both crack size and number of cracks were observed for high currents (Imax + 20%). A numerical model of the resistance spot welding process was constructed, which showed when welding with a ramp down welding current, the electrode-to-sheet interface spends less time at an LME-sensitive temperature compared to the standard welding current. Furthermore, it avoids a large jump in tensile stress when the electrodes are removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cooper AI (2015) Materials chemistry: cooperative carbon capture. Nature 519:295

    Article  Google Scholar 

  2. Jakob M, Hilaire J (2015) Unburnable fossil-fuel reserves. Nature 517:150–151. https://doi.org/10.1038/517150a

    Article  CAS  Google Scholar 

  3. McNutt M (2013) Climate change impacts. Science 341:435. https://doi.org/10.1126/science.1243256

    Article  CAS  Google Scholar 

  4. Creutzig BF, Jochem P, Edelenbosch OY et al (2015) Transport: a roadblock to climate change mitigation? Science (80- ) 350:911–912. https://doi.org/10.1126/science.aac8033

    Article  CAS  Google Scholar 

  5. Parkes D, Westerbaan D, Nayak SS, Zhou Y, Goodwin F, Bhole S, Chen DL (2014) Tensile properties of fiber laser welded joints of high strength low alloy and dual-phase steels at warm and low temperatures. Mater Des 56:193–199. https://doi.org/10.1016/j.matdes.2013.10.087

    Article  CAS  Google Scholar 

  6. Parkes D, Xu W, Westerbaan D, Nayak SS, Zhou Y, Goodwin F, Bhole S, Chen DL (2013) Microstructure and fatigue properties of fiber laser welded dissimilar joints between high strength low alloy and dual-phase steels. Mater Des 51:665–675. https://doi.org/10.1016/j.matdes.2013.04.076

    Article  CAS  Google Scholar 

  7. Xu W, Westerbaan D, Nayak SS, Chen DL, Goodwin F, Zhou Y (2013) Tensile and fatigue properties of fiber laser welded high strength low alloy and DP980 dual-phase steel joints. Mater Des 43:373–383. https://doi.org/10.1016/j.matdes.2012.07.017

    Article  CAS  Google Scholar 

  8. Kimchi M, Phillips DH (2017) Resistance spot welding, fundamentals and applications for the automotive industry. Columbus, Ohio

  9. Zhang H, Senkara J (2012) Resistance welding: fundamentals and applications

  10. Kim YG, Kim IJ, Kim JS, Chung YI, Choi DY (2014) Evaluation of surface crack in resistance spot welds of Zn-coated steel. Mater Trans 55:171–175

    Article  CAS  Google Scholar 

  11. Jiang C, Thompson a. K, Shi MF, et al (2003) Liquid metal embrittlement in resistance spot welds of AHSS steels. In: AWS Professional Program. p 9A

  12. Ina K, Koizumi H (2004) Penetration of liquid metals into solid metals and liquid metal embrittlement. Mater Sci Eng A 387–389:390–394. https://doi.org/10.1016/j.msea.2004.05.042

    Article  CAS  Google Scholar 

  13. Joseph B, Barbier F, Dagoury G, Aucouturier M (1998) Rapid penetration of liquid Bi along Cu grain boundaries. Scr Mater 39:775–781. https://doi.org/10.1016/S1359-6462(98)00230-9

    Article  CAS  Google Scholar 

  14. Beal C, Kleber X, Fabregue D, Bouzekri M (2012) Embrittlement of a zinc coated high manganese TWIP steel. Mater Sci Eng A 543:76–83. https://doi.org/10.1016/j.msea.2012.02.049

    Article  CAS  Google Scholar 

  15. Benlatreche Y, Ghassemi-Armaki H, Duchet M, et al (2017) Spot-weld integrity of Zn-coated 3rd gen. Advanced high strength steel in presence of LME. In: International Automotive Body Congress (IABC 2017 Dearborn). pp 9–18

  16. Benlatreche Y, Duchet M, Dupuy T, Cornette G Effect of liquid metal embrittlement cracks on the mechanical performances of spot welds. In: 5th International Conference on Steels in Cars and Trucks. Amsterdam

  17. DiGiovanni C, Biro E, Zhou NY (2018) Impact of liquid metal embrittlement cracks on resistance spot weld static strength. Sci Technol Weld Join 0:1–7. https://doi.org/10.1080/13621718.2018.1518363

    Article  CAS  Google Scholar 

  18. DiGiovanni C, Han X, Powell A, Biro E, Zhou NY (2019) Experimental and numerical analysis of liquid metal embrittlement crack location. J Mater Eng Perform 28:2045–2052. https://doi.org/10.1007/s11665-019-04005-2

    Article  CAS  Google Scholar 

  19. Kim YG, Kim IJ, Kim JS et al (2014) Evaluation of surface crack in resistance spot welds of Zn-coated steel. Japan Inst Met Mater 55:171–175. https://doi.org/10.2320/matertrans.M2013244

  20. Ashiri R, Haque MA, Ji C-W, shamanian M, Salimijazi HR, Park YD (2015) Supercritical area and critical nugget diameter for liquid metal embrittlement of Zn-coated twining induced plasticity steels. Scr Mater 109:6–10. https://doi.org/10.1016/j.scriptamat.2015.07.006

    Article  CAS  Google Scholar 

  21. Choi D, Sharma A, Jung JP (2018) Parametric study for liquid metal embrittlement in. In: Sheet Metal Welding Conference XVIII. American Welding Society, Livonia, MI, pp 1–9

  22. Choi DY, Sharma A, Uhm SH, Jung JP (2018) Liquid metal embrittlement of resistance spot welded 1180 TRIP steel: effect of electrode force on cracking behavior. Met Mater Int 25:219–228. https://doi.org/10.1007/s12540-018-0180-x

    Article  CAS  Google Scholar 

  23. Wintjes E, Macwan A, Biro E, Zhou YN (2018) Effect of multi-pulse welding on LME severity in RSW joints. Sheet Met Weld Conf XVIII

  24. Ashiri R, Shamanian M, Salimijazi HR, Haque MA, Bae JH, Ji CW, Chin KG, Park YD (2016) Liquid metal embrittlement-free welds of Zn-coated twinning induced plasticity steels. Scr Mater 114:41–47. https://doi.org/10.1016/j.scriptamat.2015.11.027

    Article  CAS  Google Scholar 

  25. Xu J, Zhai T (2008) The small-scale resistance spot welding of refractory alloy 50Mo-50Re thin sheet. Jom 60:80–83. https://doi.org/10.1007/s11837-008-0096-x

    Article  CAS  Google Scholar 

  26. Kaars J, Mayr P, Koppe K (2016) Generalized dynamic transition resistance in spot welding of aluminized 22MnB5. Mater Des 106:139–145. https://doi.org/10.1016/j.matdes.2016.05.097

    Article  CAS  Google Scholar 

  27. Soundarrajan M, Pasupathi K, Srinivasan N, Vengatesh MP (2015) Experimental investigation of resistance spot welding of duplex stainless steel experimental investigation of resistance spot welding of duplex stainless steel. Int J Appl Eng Res

  28. American Welding Society (2012) American Welding Society: test method for evaluating the resistance spot welding behavior of automotive sheet steel materials (AWS D 8.9M). 1–107

  29. Wintjes E, DiGiovanni C, He L, et al (2019) Quantifying the link between crack distribution and resistance spot weld strength reduction in liquid metal embrittlement susceptible steels. Weld World

  30. Hamedi M, Atashparva M (2017) A review of electrical contact resistance modeling in resistance spot welding. Weld World 61:269–290. https://doi.org/10.1007/s40194-016-0419-4

    Article  Google Scholar 

  31. Greitmann MJ, Rother K (1998) Numerical simulation of the resistance spot welding process using spotwelder. In: Cerjak H, Bhadeshia HKDH (eds) Mathematical modelling of weld phenomena 4. pp 531–544

  32. Nied H (1984) The finite element modeling of the resistance spot welding process. Annu AWS Conv:123–133

  33. Bhattacharya D (2018) Liquid metal embrittlement during resistance spot welding of Zn-coated high-strength steels. Mater Sci Technol 34:1809–1829. https://doi.org/10.1080/02670836.2018.1461595

    Article  CAS  Google Scholar 

  34. Dickinson DW, Frankling JE, Stanya A (1980) Characterization of spot welding behavior by dynamic electrical parameter monitoring. Weld J

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher DiGiovanni.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III - Resistance Welding, Solid State Welding, and Allied Joining Process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiGiovanni, C., Bag, S., Mehling, C. et al. Reduction in liquid metal embrittlement cracking using weld current ramping. Weld World 63, 1583–1591 (2019). https://doi.org/10.1007/s40194-019-00790-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-019-00790-5

Keywords

Navigation