Skip to main content
Log in

Hydrogen determination in welded specimens by carrier gas hot extraction—a review on the main parameters and their effects on hydrogen measurement

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Carrier gas hot extraction (CGHE) is a commonly applied technique for determination of hydrogen in weld joints using a thermal conductivity detector (TCD) for hydrogen measurement. The CGHE is based on the accelerated hydrogen effusion due to thermal activation at elevated temperatures. The ISO 3690 standard suggests different specimen geometries as well as necessary minimum extraction time vs. temperature. They have the biggest influence on precise hydrogen determination. The present study summarizes the results and experience of numerous test runs with different specimen temperatures, geometries (ISO 3690 type B and small cylindrical samples), and factors that additionally influence hydrogen determination. They are namely specimen surface (polished/as-welded), limited TCD sensitivity vs. specimen volume, temperature measurement vs. effects of PI-furnace controller, as well as errors due to insufficient data assessment. Summarized, the temperature is the driving force of the CGHE. Two different methods are suggested to increase the heating rate up to the desired extraction temperature without changing the experimental equipment. Suggestions are made to improve the reliability of hydrogen determination depended on the hydrogen signal stability during extraction accompanied by evaluation of the recorded data. Generally, independent temperature measurement with dummy specimens is useful for further data analysis, especially if this data is used for calculation of trapping kinetics by thermal desorption analysis (TDA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. by pressing “Ctrl -Y” in the Bruker G4/G8 control software and setting the limits manually by using the arrow keys. This is also written in the apparatus’ manual.

References

  1. Beachem CD (1972) A new model for hydrogen-assisted cracking (hydrogen “embrittlement”). Metall Mater Trans B Process Metall Mater Process Sci 3(2):441–455. https://doi.org/10.1007/BF02642048

    Article  Google Scholar 

  2. ANSI/NACE MR0175/ISO 15156 (2015) Petroleum and natural gas industries - materials for use in H2S-containing environments in oil and gas production

  3. Robertson IM, Sofronis P, Nagao A, Martin ML, Wang S, Gross DW, Nygren KE (2015) Hydrogen embrittlement understood. Metall Mater Trans B Process Metall Mater Process Sci 46(3):1085–1103. https://doi.org/10.1007/s11663-015-0325-y

    Article  Google Scholar 

  4. Du Plessis J, Du Toit M (2008) Reducing diffusible hydrogen contents in shielded metal arc welds through addition of flux oxidizing ingredients. J Mater Eng Perforn 17(4):50–56. https://doi.org/10.1007/s11665-007-9133-0

    Article  Google Scholar 

  5. Pargeter R (2003) Evaluation of necessary delay before inspection of hydrogen cracks. Weld J 82(11):321s–329s

    Google Scholar 

  6. DIN EN 1090-2 (2017) Execution of steel structures and aluminium structures - Part 2: technical requirements for steel structures

  7. EN 1011-2 (2001) Welding - recommendation for welding of metallic materials - Part 2: arc welding of ferritic steels

  8. Hirth JP (1980) Effect of hydrogen in the properties of iron steel. Metall Mater Trans A 11(6):861–890. https://doi.org/10.1007/BF02654700

    Article  Google Scholar 

  9. ISO 17462-1 (2004) Destructive tests on welds in metallic materials - cold cracking tests for weldments - arc welding processes - part 1: general

  10. Kasuya T, Hashiba Y, Ohkita S, Fuji M (2013) Hydrgen distribution in multipass submerged arc weld metals. Sci Technol Weld Join 6(4):261–266. https://doi.org/10.1179/136217101101538767

    Article  Google Scholar 

  11. Patchett BM, Yarmuch MAR (2010) Hydrocarbon contamination and diffusible hydrogen levels in shielded metal arc weld deposits. Weld J 89:262s–265s

    Google Scholar 

  12. Bailey N, Coe FR, Gooch TG, Hart PHM, Jenkins N, Pargeter RJ (2004) Welding steels without hydrogen cracking, 2nd edn. Woodhead Publishing, Oxford

    Google Scholar 

  13. Pitrun M, Nolan D, Dunne D (2004) Diffusible hydrogen content in rutile flux-cored arc welds as a function of the welding parameters. Weld World 48(1/2):2–13. https://doi.org/10.1007/BF03266408

    Article  Google Scholar 

  14. Kannengiesser T, Lausch T (2012) Diffusible hydrogen content depending on welding and cooling parameters. Weld World 56(11/12):26–33. https://doi.org/10.1007/BF03321392

    Article  Google Scholar 

  15. Schaupp T, Kannengiesser T, Burger T et al (2018) Einfluss der Wärmeführung auf die Wasserstoffkonzentration in geschweißten höherfesten Feinkornbaustählen beim Einsatz modifizierter Sprühlichtbogenprozesse. Schweißen und Schneiden 70(5):290–297

    Google Scholar 

  16. Schaupp T, Rhode M, Yahyaoui H, Kannengiesser T (2018) Hydrogen distribution in multi-layer welds of steel S960QL. In: Proceedings of the Third International Conference on Metals & Hydrogen, Ghent

  17. Mente T, Boellinghaus T, Schmitz-Niederau M (2012) Heat treatment effects on the reduction of hydrogen in multi-layer high-strength weld joints. Weld World 56(7/8):26–36. https://doi.org/10.1007/BF03321362

    Article  Google Scholar 

  18. Kannengiesser T, Boellinghaus T (2013) Cold cracking tests-an overview of present technologies and applications. Weld World 57:3–37. https://doi.org/10.1007/s40194-012-0001-7

    Article  Google Scholar 

  19. Schaupp T, Rhode M, Kannengiesser T (2008) Influence of welding parameters on diffusible hydrogen content in high-strength steel welds using modified spray arc process. Weld World 62(1):9–18. https://doi.org/10.1007/s40194-017-0535-9

    Article  Google Scholar 

  20. ISO/DIS 3690 - Result and comment. IIW-Doc. II-E-760-18. Presented at: Intermediate Meeting of IIW Commission II-E, Genoa, Italy

  21. N.N. (2017) Comments on ISO/DIS 3690 by Japan Welding Engineering Society. IIW-Doc. II-E-750-17. Presented at: Intermediate Meeting of IIW Commission II-E, Genoa, Italy

  22. The Japan Welding Engineering Society, Technical Committee - Welding Consumables Division (2016) Determination of hydrogen content in arc weld metal per ISO 3690:20 - study on the measurement conditions in hot-extraction method. IIW-Doc. II-E-721r-16

  23. ISO 3690 (2012) Welding and allied processes - determination of hydrogen content in arc weld metal

  24. ANSI/AWS A4.3-93 (2006) Standard methods for determination of the diffusible hydrogen content of martensitic, bainitic, and ferritic steel weld metal produced by arc welding

  25. JSA/JIS Z 3118 (2014) Method for measurement of amount of hydrogen evolved from steel welds

  26. Padhy GK, Komizo YI (2013) Diffusible hydrogen in steel weldments - a status review. Trans JWRI 42(1):39–62

    Google Scholar 

  27. Fydrych D, Labanowski (2011) Determining diffusible hydrogen amounts using the mercury method. Weld J 26(9):697–702. https://doi.org/10.1080/09507116.2011.592682

    Article  Google Scholar 

  28. Jenkins N, Hart PHM, Parker DH (1997) An evaluation of rapid methods for diffusible weld hydrogen. Weld J 76(1):1s–10s

    Google Scholar 

  29. Kannengiesser T, Tiersch N (2010) Comparative study between hot extraction methods and mercury method - a national round robin test. Weld World 54(5/6):R108–R114. https://doi.org/10.1007/BF0326349

    Article  Google Scholar 

  30. Salmi S, Rhode M, Juettner S, Zinke M (2014) Hydrogen determination in 22MnB5 steel grade by use of carrier gas hot extraction technique. Weld World 59:137–144. https://doi.org/10.1007/s40194-014-0186-z

    Article  Google Scholar 

  31. Steppan E, Mantzke P, Steffens BR, Rhode M, Kannengiesser T (2017) Thermal desorption analysis for hydrogen trapping in microalloyed high-strength steels. Weld World 61(4):637–648. https://doi.org/10.1007/s40194-017-0451-z

    Article  Google Scholar 

  32. Rhode M, Mente T, Steppan E, Steger J, Kannengiesser T (2018) Hydrogen trapping in T24 Cr-Mo-V steel weld joints -microstructure effect vs. experimental influence on activation energy for diffusion. Weld World 62(2):277–287. https://doi.org/10.1007/s40194-017-0546-6

    Article  Google Scholar 

  33. Rhode M, Muenster C, et al. (2017) Influence of experimental conditions and calculation method on hydrogen diffusion coefficient evaluation at elevated temperatures. In: Somerday BP, Sofronis P (eds) International Hydrogen Conference (IHC 2016): Materials Performance in Hydrogen Environments. ASME Press, pp 495–503. https://doi.org/10.1115/1.861387_ch56

  34. O’Dwyer A (2009) Handbook of PI and PID controller rules. Imperial College Press, London

    Book  Google Scholar 

  35. Rhode M (2016) Hyrogen diffusion and effect on degradation in welded Microstructures of creep-resistant low-alloyed steels. BAM-Dissertationsreihe 148, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany. ISBN: 978-3-9817853-3-3

  36. Grabke HJ, Riecke E (2000) Absorption and diffusion of hydrogen in steels. Mater Tehnol 34(6):331–342

    Google Scholar 

  37. Boellinghaus T, Hoffmeister H, Dangeleit A (1995) A scatterband for hydrogen diffusion coefficients in micro-alloyed and low carbon structural steels. Weld World 35(2):83–96

    Google Scholar 

  38. System specifications of Bruker G4 Phoenix DH. https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/csonh-analysis/g4-phoenix-dh/technical-details.html. Accessed on 2018-06-08

  39. EN ISO 17632 (2016) Welding consumables - tubular cored electrodes for gas shielded and non-gas shielded metal arc welding of non-alloy and fine grain steels - classification

  40. EN ISO 17633 (2010) Welding consumables - tubular cored electrodes and rods for gas shielded and non-gas shielded metal arc welding of stainless and heat-resisting steels - classification

  41. EN ISO 17634 (2015) Welding consumables - tubular cored electrodes for gas shielded metal arc welding of creep-resisting steels - classification

  42. Lausch T (2015) Zum Einfluss der Wärmeführung auf die Rissbildung beim Spannungsarmglühen dickwandiger Bauteile aus 13CrMoV9–10. BAM-Dissertationsreihe 134, BAM, Berlin, Germany. ISBN: 978-3-9817149-5-1, p 222

  43. Solheim KG, Solberg JK, Walmsley J, Rosenqvist F, Bjorna TH (2013) The role of retained austenite in hydrogen embrittlement of supermartensitic stainless steel. Eng Fail Anal 34:140–149. https://doi.org/10.1016/j.engfailanal.2013.07.025

    Article  Google Scholar 

  44. Elhoud AM, Renton NC, Deans WF (2010) Hydrogen embrittlement of super duplex stainless steel in acid solution. Int J Hydrog Energy 35:6455–6464. https://doi.org/10.1016/j.ijhydene.2010.03.056

    Article  Google Scholar 

  45. http://www.scigiene.com/pdfs/428_InfraredThermometerEmissivitytablesrev.pdf. Accessed on 2018-06-08

  46. ChooWY LJY (1982) Thermal analysis of trapped hydrogen in pure iron. Metall Trans A 13(1):135–140. https://doi.org/10.1007/BF02642424

    Article  Google Scholar 

  47. Kuhlmann M, Schwedler O, Holtschke N, Juettner S (2015) Consideration of hydrogen transport in press-hardened 22MnB5. Mater Test 57(11–12):977–984. https://doi.org/10.3139/120.110808

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank Mr. Michael Richter for the machining of the manifold specimens. Mrs. Stefanie Groth and Mr. Jörg Steger are thanked for assistance in performing the electrochemical charging experiments. Mr. Enrico Steppan is thanked for the fruitful discussions and keeping the lab running.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rhode.

Additional information

Recommended for publication by Commission II - Arc Welding and Filler Metals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhode, M., Schaupp, T., Muenster, C. et al. Hydrogen determination in welded specimens by carrier gas hot extraction—a review on the main parameters and their effects on hydrogen measurement. Weld World 63, 511–526 (2019). https://doi.org/10.1007/s40194-018-0664-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-018-0664-9

Keywords

Navigation