Welding in the World

, Volume 62, Issue 5, pp 1039–1047 | Cite as

Laser beam oscillation welding for automotive applications

  • A. MüllerEmail author
  • S. F. Goecke
  • M. Rethmeier
Research Paper


Laser beam oscillation, applied one- or two-dimensional to the actual welding process, influences the welding process in terms of compensation of tolerances and reduction of process emissions like spatter and melt ejections that occur in industrial applications, such as in body-in-white manufacturing. If the welding process could be adapted to these tolerances by the momentarily demanded melt pool width to generate sufficient melt volume or to influence melt pool dynamics, e.g. for a better degassing, laser welding would become more robust. However, beam oscillation results are highly dependent on the natural frequency of the melt pool, the used spot diameter and the oscillation speed of the laser beam. The conducted investigations with an oscillated 300 μm laser spot show that oscillation strategies which are adjusted to the joining situation can bridge gaps to approximately 0.6 mm at metal sheet thickness of 0.8 mm. However, the complex behaviour of the melt pool has to be considered to generate proper welding results. This work puts emphasis on showing aspects of beam oscillation in fillet welding in lap joints.


Automotive application Laser welding Adaptive welding beam oscillation Melt pool dynamics Gap bridging 


  1. 1.
    Sun Z, Karppi R (27 May 1996) The application of electron beam welding for the joining of dissimilar metals: an overview. J Mater Process Technol 59:257–267CrossRefGoogle Scholar
  2. 2.
    Albert F, Müller A, Sievi P (2013) Laserstrahl-Remoteschweißen mit Nahtführung und örtlicher Strahloszillation – eine Wirtschaftlichkeitsbetrachtung. Laser Techn J Nr. submittedGoogle Scholar
  3. 3.
    Standfuß J, Klotzbach A, Heitmanek M, Krätzsch M (2010) Laser beam welding with high-frequency beam oscillation: welding of dissimilar materials with brilliant fiber lasers. International Laser Symposium Fiber & Disc (FiSC), DresdenGoogle Scholar
  4. 4.
    Meier O (2005) Hochfrequentes Strahlpendeln zur Erhöhung der Prozessstabilität beim Laserstrahlschweißen. Laser Zentrum Hannover e.V., HannoverGoogle Scholar
  5. 5.
    Müller MG (2002) Prozessüberwachung beim Laserstrahlschweißen durch Auswertung der reflektierten Leistung. Herbert Utz Verlag, MünchenGoogle Scholar
  6. 6.
    Fabbro R (2010) Melt pool and keyhole behaviour analysis for deep penetration laser welding. J Phys D Appl PhysGoogle Scholar
  7. 7.
    Volpp J, Freimann D (2013) Indirect measurement of keyhole pressure oscillations during laser deep penetration welding. In: 32nd International congress on applications of lasers & electro-optics, Miami, FL USAGoogle Scholar
  8. 8.
    Poprawe R (2005) Lasertechnik für die Fertigung. Springer-Verlag, Berlin, p 75 ffGoogle Scholar
  9. 9.
    Heiple C, Roper J, Stagner R, Aden R (1983) Surface active element effects on the shape of GTA, laser, and electron beam welds. Weld Res Suppl:72–75Google Scholar
  10. 10.
    Schulze G (2010) Die Metallurgie des Schweißens. Springer-Verlag, BerlinCrossRefGoogle Scholar
  11. 11.
    Amara E-H, Khelooufi K, Tamsaout T (2013) 2D Modeling of surface tension effect during laser metal cutting,“ In: 32nd Internation congress on applications of lasers & electro-optics, MiamiGoogle Scholar
  12. 12.
    Siwek A (2013) Model of surface tension in the keyhole formation area during laser welding. Comput Methods Mater Sci 13(1):166–172Google Scholar
  13. 13.
    Meyer R (2012) Erhöhung der Prozesssicherheit durch Beherrschung der Bauteilabweichung beim Fügen im Karosseriebau. TUD, DresdenGoogle Scholar
  14. 14.
    Müller A, Goecke SF (2013) Investigation on laser beam oscillation for fillet welds in lap joints. In Proceedings of Joining of Materials 17, HelsingorGoogle Scholar
  15. 15.
    Reek A (2000) Strategien zur Fokuspositionierung beim Laserstrahlschweißen. Technische Universität MünchenGoogle Scholar
  16. 16.
    Thiel C, Hess A, Weber R, Graf T (2012) Stabilization of laser welding processes by means of beam oscillation. Laser Sources and Applications - Proceedings of SPIE 8433.
  17. 17.
    Müller A, Goecke S, Rethmeier M (2014) Laser beam oscillation for fillet welding. Welding in the World.

Copyright information

© International Institute of Welding 2018

Authors and Affiliations

  1. 1.University of Applied Science BrandenburgBrandenburg an der HavelGermany
  2. 2.BAM - Federal Institute for Materials Research and TestingBerlinGermany

Personalised recommendations