Welding in the World

, Volume 62, Issue 5, pp 1031–1037 | Cite as

Susceptibility of electrolytically galvanized dual-phase steel sheets to liquid metal embrittlement during resistance spot welding

  • Julian FreiEmail author
  • Michael Rethmeier
Research Paper


Modern advanced high-strength steel sheets for automotive applications are mostly zinc coated for corrosion resistance. However, the presence of zinc can—besides its positive effects—increase the material’s susceptibility to liquid metal embrittlement (LME) during resistance spot welding (RSW). Zinc and its eutectics are, due to their low melting point, present in liquid state during the welding process. This fact can, in combination with other factors like tensile strains or stresses, lead to the formation of brittle, intergranular cracks in the weld, and heat-affected zone. This phenomenon is commonly called liquid metal embrittlement. In order to understand the process from a practical perspective, one must learn what factors facilitate it. In this study, industry-relevant parameters are investigated regarding their influence on the occurrence of LME, embodied by the formation of surface cracks. It was found that electrode wear has less of an influence on the cracking susceptibility than welding current or tensile stresses. Finite element analysis is believed to provide a powerful tool in order to gain insights on the formation process. Modeling of the process shows promising initial results, revealing the underlying local stress and strain fields, unmeasurable with common techniques.


High-strength steel sheets Zinc Resistance spot welding Liquid metal embrittlement Surface cracks 



The authors want to thank the voestalpine Steel Division for provision of testing materials and fruitful discussions.


  1. 1.
    Brauser S, Pepke LA, Weber G, Rethmeier M (2010) Deformation behaviour of spot-welded high strength steels for automotive applications. Mater Sci Eng A 527:7099–7108. CrossRefGoogle Scholar
  2. 2.
    Brauser S, Pepke LA, Weber G, Rethmeier M (2013) Influence of production-related gaps on strength properties and deformation behaviour of spot welded trip steel HCT690T. Weld World 56:115–125. CrossRefGoogle Scholar
  3. 3.
    Choi D, Uhm S, Enloe CM et al (2017) Liquid metal embrittlement of resistance spot welded 1180TRIP steel—effects of crack geometry on weld mechanical performance. 2017:454–462.
  4. 4.
    Rethmeier M (2014) Influence of weld imperfections on the fatigue behavior of resistance spot welded advanced high strength steels. Adv Mater Res 891, 892:1445–1450CrossRefGoogle Scholar
  5. 5.
    Tolf E, Hedegård J, Melander A (2013) Surface breaking cracks in resistance spot welds of dual phase steels with electrogalvanised and hot dip zinc coating. Sci Technol Weld Join 18:25–31. CrossRefGoogle Scholar
  6. 6.
    VEREIN DEUTSCHER INGENIEURE (2017) Schadensanalyse Flüssigmetallinduzierte Rissbildung. Vdi-richtlin 3822:1–2Google Scholar
  7. 7.
    Joseph B, Picat M, Barbier F (1999) Liquid metal embrittlement: a state-of-the-art appraisal. Eur Phys J Appl PhysGoogle Scholar
  8. 8.
    Westwood ARC, Preece CM, Kamdar MH (1967) Adsorption-induced brittle fracture in liquid metal environments. Clearinghouse, BaltimoreGoogle Scholar
  9. 9.
    Kamdar MH (1983) Liquid metal embrittlement. In: Briant CL, Banerji SK (eds) Treatise mater. Sci Technol, pp 361–459Google Scholar
  10. 10.
    Fernandes PJL, Clegg RE, Jone DRH (1994) Failure by liquid metal induced embrittlement. Eng Fail Anal 1:51–63CrossRefGoogle Scholar
  11. 11.
    Zhang H, Senkara J (2006) Resistance welding—fundamentals and application. J Chem Inf Model.
  12. 12.
    Sigler DR, Schroth JG, Yang W (2008) Observations of liquid metal-assisted cracking in resistance spot welds of zinc-coated advanced high-strength steels. In: Sheet Met. Weld. Conf. pp 1–9Google Scholar
  13. 13.
    Beal C, Kleber X, Fabregue D, Bouzekri M (2012) Liquid zinc embrittlement of twinning-induced plasticity steel. Scr Mater 66:1030–1033. CrossRefGoogle Scholar
  14. 14.
    Nicholas MGG, Old CFF, Division MD (1979) Review liquid metal embrittlement. J Mater Sci 14:1–18. CrossRefGoogle Scholar
  15. 15.
    Gordon P (1978) Metal-induced embrittlement of metals—an evaluation of embrittler transport mechanisms. Metall Trans A 9:267–273. CrossRefGoogle Scholar
  16. 16.
    Joseph B, Picat M, Barbier F (1999) Liquid metal embrittlement: a state-of-the-art appraisal. Eur Phys J Appl Phys 15(1):19–31CrossRefGoogle Scholar
  17. 17.
    Ernst W (2016) Widerstandspunktschweißen von metallisch und organisch beschichteten Stahlfeinblechen. Technische Universität GrazGoogle Scholar
  18. 18.
    Frei J, Suwala H, Gumenyuk A, Rethmeier M (2016) Bestimmung der Rissanfälligkeit von hochfesten Stählen beim Widerstandspunktschweißen. Mater Test 58:7–8. CrossRefGoogle Scholar
  19. 19.
    Gaul H, Brauser S, Weber G, Rethmeier M (2011) Methods to obtain weld discontinuities in spot-welded joints made of advanced high-strength steels. Weld World 55:99–106. CrossRefGoogle Scholar
  20. 20.
    (2011) Stahl-Eisen-Prüfblatt 1220: Prüf- und Dokumentationsrichtlinie für die Fügeeignung von Feinblechen aus StahlGoogle Scholar
  21. 21.
    R.H. W (1996) Confocal optical microscopy: reports on progress in physics. Rep Prog Phys 59:427–471CrossRefGoogle Scholar
  22. 22.
    Rethmeier M, Suwala H, Frei J (2017) Schlussbericht zum IGF Vorhaben Nr. P 921 / S 024/10197/12: “Entwicklung eines Verfahrens zur Bestimmung der Rissanfälligkeit von hochfesten Stählen beim Widerstandspunktschweißen”Google Scholar

Copyright information

© International Institute of Welding 2018

Authors and Affiliations

  1. 1.Fraunhofer Institute for Production Systems and Design TechnologyBerlinGermany
  2. 2.Federal Institute for Materials Research and Testing (BAM)BerlinGermany

Personalised recommendations