Skip to main content
Log in

Texture evolution and plastic deformation mechanism in magnetic pulse welding of dissimilar Al and Mg alloys

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Texture evolution and plastic deformation mechanism of the weld zones of magnetic pulse welded dissimilar 1060 pure Al and AZ31B Mg alloy have been investigated in the present work. A much refined microstructure with smaller grains and higher hardness was observed near the weld interface which has different texture types compared to the BM (base material) at both the Al side and the Mg side. The intermetallic layers at the interface of the Al side and the Mg side have the highest hardness. The region near the weld interface has higher activity of both slip and twinning. Slip occurs on two planes (111) and (\( \overline{1} \)11) in the Al BM, while the active slip systems in the Al region near the weld interface are on four planes (111), (11\( \overline{1} \)), (\( \overline{1} \)11) and (1\( \overline{1} \)1). The transition of single texture in the BM to complex texture type in the region near the weld interface at both the Al side and the Mg side was due to {111} slip and {10\( \overline{1} \)2} twinning, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Weman K (2003) Welding processes ehandbook (Cambridge: Woodhead publishing ltd, England, and CRC Press LLC, North America, USA), pp. 94–101

  2. Kapil A, Sharma A (2015) Magnetic pulse welding, an efficient and environmentally friendly multi-material joining technique. J Clean Prod 100(1):35–58

    Article  Google Scholar 

  3. Jassim AK (2011) Magnetic pulse welding technology. Iraq J Electr Electron Eng 7(2):169–179

    Google Scholar 

  4. Kochan A (2000) Magnetic pulse welding shows potential for automotive applications. Assem Autom 20(2):129–132

    Article  Google Scholar 

  5. Shribman V, Blakely M (2008) Benefits of the magnetic pulse process for welding dissimilar metals. Weld J 87(9):56–59

    CAS  Google Scholar 

  6. Wu X, Shang J (2014) An investigation of magnetic pulse welding of Al/Cu and interface characterization. J Manuf Sci Eng 136(5):1–10

    Article  CAS  Google Scholar 

  7. Cui J, Sun G, Xu J, Xu Z, Huang X, Li G (2016) A study on the critical wall thickness of the inner tube for magneticpulse welding of tubular Al-Fe parts. J Mater Process Technol 2(27):138–146

    Article  Google Scholar 

  8. Kastensson A (2014) Developing lightweight concepts in the automotive industry, taking on the environmental challenge with the SaNatt project. J Clean Prod 66(66):337–346

    Article  Google Scholar 

  9. Cui J, Sun G, Li ZX, Chu PK (2014) Specific wave interface and its formation during magnetic pulse welding. Appl Phys Lett 105(22):1–3

    Article  Google Scholar 

  10. Nassiri A, Chini G, Kinsey B (2014) Spatial stability analysis of emergent wavy interfacial patterns in magnetic pulsed welding. CIRP Annals- Manuf Technol 63(1):245–248

    Article  Google Scholar 

  11. Kore SD, Imbert J, Worswick MJ, Zhou Y (2009) Electromagnetic impact welding of Mg to Al sheets. Sci Technol Weld Join 14(6):549–553

    Article  CAS  Google Scholar 

  12. Ben-Artzy A, Stern A, Frage N, Shribman V, Sadot O (2010) Wave formation mechanism in magnetic pulse welding. Intl J Impact Eng 37:397–404

    Article  Google Scholar 

  13. Stern A, Aizenshtein M (2011) Magnetic pulse welding of Al to Mg alloys, structural-mechanical properties of the interfacial layer. Mater Sci Technol 27(12):1809–1813

    Article  CAS  Google Scholar 

  14. Stern A, Aizenshtein M, Moshe G, Cohen SR, Frage N (2013) The nature of interfaces in Al-1050/Al-1050 and Al-1050/Mg-AZ31 couples joined by magnetic pulse welding (MPW). J Mater Eng Perform 22(7):2098–2103

    Article  CAS  Google Scholar 

  15. Chen S, Xia Y, Yu Y, Bai L, Lu Z (2012) Research on the interface morphology of magnetic pulse welded Al-Mg alloy. Rare Metal Mater Eng 41(2):352–354

    CAS  Google Scholar 

  16. Stern A, Shribman V, Ben-Artzy A, Aizenshtein M (2014) Interface phenomena and bonding mechanism in magnetic pulse welding. J Mater Eng Perform 23(10):3449–3458

    Article  CAS  Google Scholar 

  17. Zhang Y, Babu S, Daehn GS (2010) Impact welding in a variety of geometric configurations (the 4th International Conference on High Speed Forming Proc., Ohio, USA), p. 97–107

  18. Berlin A 2010 Magnetic pulse welding of Mg sheet, Mater thesis, University of Waterloo, Canada

  19. Berlin A, Nguyen TC, Worswick MJ, Zhou Y (2010) Metallurgical analysis of magnetic pulse welds of AZ31 magnesium alloy. Sci Technol Weld Join 16(8):728–734

    Article  Google Scholar 

  20. Markashova L, Arsenyuk VV, Grigorenko GM (2005) Relationship governing plastic deformation in pressure welding dissimilar metals. Weld Int 19(1):68–72

    Article  Google Scholar 

  21. Zhen L, Zou DL, Xu CY, Shao WZ (2010) Microstructure evolution of adiabatic shear bands in AM60B magnesium alloy under ballistic impact. Mater Sci Eng A A527:5728–5733

    Article  CAS  Google Scholar 

  22. Zhang L (2008) A study of influence factors on interface microstructure and properties of explosive welding of composite materials, Master thesis, Nanjing University of Technology, China

  23. Chiba A, Nishida M, Morizono Y (2004) Microstructure of bonding interface in explosively-welded clads and bonding mechanism. Mater Sci Forum 465-466:465–474

    Article  CAS  Google Scholar 

  24. Preuss M, Quinta da Fonseca J, Allen V, Prakash DGL, Daymond MR (2010) Twinning in structural material with a hexagonal close-packed crystal structure. Spec Issue Pap J Strain Anal 45(5):377–389

    Article  Google Scholar 

  25. Bhattacharya R 2010 Hot deformation studies on Mg AZ31 alloy using plane strain compression (PSC) machine. PhD thesis, The University of Sheffield, UK

  26. Ahmed MMZ (2009) The development of thick section welds and ultra-fine grain Al using friction stir welding and processing. PhD thesis, the University of Sheffield, UK

  27. Plummer J (2012) PhD thesis, the University of Sheffield, UK

  28. Bunge HJ (1982) Texture analysis in materials science, mathematical methods, lst edn. Butterworth & Co., Berlin, pp 6–20

    Chapter  Google Scholar 

  29. Huang Y, Humphreys FJ, Ferry M (2000) The annealing behaviour of deformed cube oriented aluminium single crystals. Acta Mater 48(10):2543–2556

    Article  CAS  Google Scholar 

  30. Humphreys FJ (2001) VMAP software, Manchester Materials science Centre, the University of Manchester

  31. Humphreys FJ, Hatherly M (2004) Recrystallization phenomenon and related annealing phenomena, 2nd edn. Elsevier, Amsterdam, pp 268–320

    Google Scholar 

  32. Pedrosa ML (2007) An analysis of microstructure evolution in hot worked Al subjected to non-linear deformation. PhD thesis, the University of Sheffield, UK

  33. Bishop JFW, Hill R (1951) A theoretical derivation of the plastic properties of a polycrystalline face-centred metal. Philos Mag 42(334):1298–1307

    Article  CAS  Google Scholar 

  34. Randle V (2004) Application of electron backscatter diffraction to grain boundary characterization. Int Mater Rev 49(1):1–11

    Article  CAS  Google Scholar 

  35. Wang Y, Chen M, Zhou F, Ma E (2002) High tensile ductility in a nanostructured metal. Nature 419:912–915

    Article  CAS  Google Scholar 

  36. Goodhew PJ (1979) Annealing twin formation by boundary dissociation. Metal Sci 13(3–4):108–112

    Article  CAS  Google Scholar 

  37. Wang YN, Huang JC (2003) Review texture analysis in hexagonal material. Mater Chem Phys 81(1):11–26

    Article  CAS  Google Scholar 

  38. Gehrmann R, Frommert MM, Gottstein G (2005) Texture effects on plastic deformation of magnesium. Mater Sci Eng A 395(1):338–349

    Article  Google Scholar 

  39. Yang P (2007) Electron backscatter diffraction technique and its application, 1st edn. Metallurgical Industry Press, China, p 146

    Google Scholar 

  40. Balasubramanian S (1998) Polycrystalline plasticity, application to deformation processing of lightweight metals, PhD thesis, Massachusetts Institute of Technology, USA

  41. Staroselsky A, Anand L (2003) A constitutive model for hcp materials deforming by slip and twinning, application to magnesium alloy AZ31B. Int J Plast 19(10):1843–1864

    Article  CAS  Google Scholar 

  42. Ando S, Tsushida M, Kitahara H (2012) Plastic deformation behavior in magnesium alloy single crystals. Mater Sci Forum 706-709:1122–1127

    Article  CAS  Google Scholar 

  43. Wright SI (1993) A review of automated orientation imaging microscopy (OIM). J Comput Assist Micros 5(3):207–221

    Google Scholar 

  44. Mason TA, Adams BL (1994) The application of orientation imaging microscopy. J Miner Met Mater Soc 46(10):43–47

    Article  CAS  Google Scholar 

  45. Hong SG, Park SH, Lee CS (2010) Role of {10-12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Mater 58(2):5873–5885

    Article  CAS  Google Scholar 

  46. Reed-Hill RE, Abbaschian R (1994) Physical metallurgy principles, 3rd edn. MA, Boston

    Google Scholar 

  47. Jiang J, Godfrey A, Liu W, Liu Q (2008) Identification and analysis of twinning variants during compression of a Mg-Al-Zn alloy. Scr Mater 58(2):122–125

    Article  CAS  Google Scholar 

  48. Yang P, Yu Y, Chen L, Mao W (2004) Experimental determination and theoretical prediction of twin orientations in magnesium alloy. Scr Mater 50(8):1163–1168

    Article  CAS  Google Scholar 

  49. Nave MD, Barnett MR (2004) Microstructures and textures of pure magnesium deformed in plane-strain compression. Scr Mater 51(9):881–885

    Article  CAS  Google Scholar 

  50. Clausen B, Leffers T, Lorentzen T, Pedersen OB, Houtte PV (1999) The resolved shear stress on the non-active slip systems in taylor/bishop-hill models for fcc polycrystals. Scr Mater 42(1):91–96

    Article  Google Scholar 

  51. Hirsch J, Nes E, Lücke K (1987) Rolling and recrystallization textures in directionally solidified aluminium. Acta Metall 35(2):427–438

    Article  CAS  Google Scholar 

  52. Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr Mater 39(9):1221–1227

    Article  CAS  Google Scholar 

  53. Vatne HE, Engler O, Nes E (1997) Influence of particles on recrystallisation textures and microstructures of aluminium alloy 3103. Mater Sci Technol 13(2):93–102

    Article  CAS  Google Scholar 

  54. Hirsch J, Lṻcke K, Matherly M (1988) Overview NO. 76 Mechanism of deformation and development of rolling textures in polycrystalline fcc metals---III The influence of slip inhomogeneities and twinning. Acta Metall 36(11):2905–2927

    Article  CAS  Google Scholar 

  55. Hirsch J, Lṻcke K (1988) Overview no. 76: Mechanism of deformation and development of rolling textures in polycrystalline fcc metals—I Description of rolling texture development in homogeneous CuZn alloys. Acta Metall 36(11):2863–2882

    Article  CAS  Google Scholar 

  56. Yeung WY, Hirsch J, Hatherly M (1989) Rolling and annealing of fine grained 70:30 brass. Textures Microstructures 10(2):135–152

    Article  CAS  Google Scholar 

  57. Wasserman G (1963) Der Einfluss mechanischer Zwillingsbildung auf die Entstehung der Waltztexturen Kubisch flacheuzentrierter (The influence of mechanical twinning to the emergence of Waltz FCC texture). Metalle Z Metall 54:61

    Google Scholar 

  58. Engler O, Heckelmann I, Rickert T, Hirsch J, Lucke K (1994) Effect of pretreatment and texture on recovery and recrystallisation in AI-4-5Mg-O-7Mn alloy. Mater Sci Technol 10(9):771–782

    Article  CAS  Google Scholar 

  59. Guiglionda G, Borbély A, Driver JH (2004) Orientation-dependent stored energies in hot deformed Al–2.5% Mg and their influence on recrystallization. Acta Mater 52(12):3413–3423

    Article  CAS  Google Scholar 

  60. Saxl I, Haslingerová I (1974) Double prismatic slip in textured Mg-2 percent Be alloy. Czech J Phys B 24(12):1351–1361

    Article  Google Scholar 

  61. Gehrmann R, Frommert MM, Gottstein G (2005) Texture effects on plastic deformation of magnesium. Mater Sci Eng A 395(1–2):338–349

    Article  Google Scholar 

  62. Ung’ar T, Glavicic MG, Balogh L, Nyilas K, Salem AA, Ribárika G, Semiatin SL (2008) The use of X-ray diffraction to determine slip and twinning activity in commercial-purity (CP) titanium. Mater Sci Eng A 493:79–85

    Article  Google Scholar 

  63. Agnew SR, Yoo MH, Tome CN (2001) Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater 49(20):4277–4289

    Article  CAS  Google Scholar 

  64. Yi SB, Davies CHJ, Brokmeier HG, Bolmaro RE, Kainer KU, Homeyer J (2006) Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading. Acta Mater 54:549–562

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Ministry of Education Research Fund for the doctoral program of P.R. China (Grant No. 20111003110003) and the National Natural Science Foundation of China (Grant No. 51575012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Chen.

Additional information

Recommended for publication by Commission III - Resistance Welding, Solid State Welding, and Allied Joining Process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Chen, S. Texture evolution and plastic deformation mechanism in magnetic pulse welding of dissimilar Al and Mg alloys. Weld World 62, 1159–1171 (2018). https://doi.org/10.1007/s40194-018-0607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-018-0607-5

Keywords

Navigation