Advertisement

Welding in the World

, Volume 62, Issue 4, pp 767–774 | Cite as

Hybrid laser-arc welding of thick-walled ferromagnetic steels with electromagnetic weld pool support

  • Ömer Üstündağ
  • André Fritzsche
  • Vjaceslav Avilov
  • Andrey Gumenyuk
  • Michael Rethmeier
Research Paper

Abstract

The hybrid laser-arc welding (HLAW) process provides many advantages over laser welding and arc welding alone, such as high welding speed, gap bridgeability, and deep penetration. The developments in hybrid laser-arc welding technology using modern high-power lasers allow single-pass welding of thick materials. This technology can be used for the heavy metal industries such as shipbuilding, power plant fabrication, and line-pipe manufacturing. The obvious problem for single-pass welding is the growth of the hydrostatic pressure with increasing thickness of materials leading to drop-out of molten metal. This phenomenon is aggravated at slow welding velocities because of increasing weld seam width followed by a decrease of Laplace pressure compensating the hydrostatic pressure. Therefore, weld pool support is necessary by welding of thick materials with slow welding velocities. The innovative electromagnetic weld pool support system is contactless and has been used successfully for laser beam welding of aluminum alloys and austenitic and ferromagnetic steels. The support system is based on generating Lorentz forces within the weld pool. These are produced by an oscillating magnetic field orientated perpendicular to the welding direction. The electromagnetic weld pool support facilitates a decrease in the welding speed without a sagging and drop-out of the melt thus eliminating the limitations of weldable material thickness.

Keywords

Hybrid laser-arc welding Thick-walled steel Electromagnetic weld pool support Ferromagnetic steels High-power laser beam 

References

  1. 1.
    Steen WM, Eboo M, Clarke J (1978) Arc augmented laser welding of materials. Advances in Welding Processes Proceedings.4th International Conference. Harrogate, UKGoogle Scholar
  2. 2.
    Dilthey U, Lueder F, Wischemann A (1999) Technical and economical advantages by synergies in laser arc hybrid welding. Welding in the World 43:141–152Google Scholar
  3. 3.
    Rethmeier M, Gook S, Lammers M, Gumenyuk A (2009) Laser-hybrid welding of thick plates up to 32 mm using a 20 kW fibre laser. J Jpn Weld Soc 27:74–79CrossRefGoogle Scholar
  4. 4.
    Kristensen JK, Webster S, Petring D (2009) Hybrid laser welding of thick section steels—the HYBLAS project. Proceedings of the 12th Nordic Laser Materials Processing (NOLAMP) Conference. Kopenhagen, Dänemark, Aug. 2009Google Scholar
  5. 5.
    Sumpf A, Anders M, Jasnau U (2007) Erweiterung der Prozessgrenzen beim Laser-MSG-Hybridschweißen durch Anwendung einer Pulverbadstütze und/oder Lichtbogenpendelung. DVS Berichte 244(2007):28–34Google Scholar
  6. 6.
    Wahba M, Mizutani M, Katayama S (2016) Single pass hybrid laser-arc welding of 25 mm thick square groove butt joints. Mater Des 97:1–6CrossRefGoogle Scholar
  7. 7.
    Gook S, Gumenyuk A, Rethmeier M (2009) Orbital laser-hybrid welding of pipeline using a 20 kW fibre laser. In: Proceedings of the Fifth International WLT-Conference on Lasers in Manufacturing 2009, MünchenGoogle Scholar
  8. 8.
    Avilov V, Gumenyuk A, Lammers M, Rethmeier M (2012) PA position full penetration high power laser beam welding up to 30 mm thick AlMg3 plates using electromagnetic weld pool support. Sci Technol Weld Join 17:128–133CrossRefGoogle Scholar
  9. 9.
    Avilov V, Fritzsche A, Bachmann M, Gumenyuk A, Rethmeier M (2016) Full penetration laser beam welding of thick duplex steel plates with electromagnetic weld pool support. J Laser Appl 28(2):022420CrossRefGoogle Scholar
  10. 10.
    Lancaster JF (1986) The physics of welding. Pergamon Press, OxfordGoogle Scholar
  11. 11.
    Kubaschewski O (2013) Iron—binary phase diagrams. Springer Science & Business Media, BerlinGoogle Scholar
  12. 12.
    Fritzsche A, Avilov V, Gumenyuk A, Hilgenberg K, Rethmeier M (2016) High power laser beam welding of thick-walled ferromagnetic steels with electromagnetic weld pool support. Phys Procedia 83:362–372CrossRefGoogle Scholar
  13. 13.
    Bachmann M (2014) Numerische Modellierung einer elektromagnetischen Schmelzbadkontrolle beim Laserstrahlschweißen von nicht-ferromagnetischen Werkstoffen. BAM PhD-ThesisGoogle Scholar

Copyright information

© International Institute of Welding 2018

Authors and Affiliations

  • Ömer Üstündağ
    • 1
  • André Fritzsche
    • 2
  • Vjaceslav Avilov
    • 3
  • Andrey Gumenyuk
    • 1
    • 2
  • Michael Rethmeier
    • 1
    • 2
  1. 1.Fraunhofer Institute for Production Systems and Design TechnologyBerlinGermany
  2. 2.Federal Institute for Materials Research and Testing (BAM)BerlinGermany
  3. 3.Otto von Guericke University MagdeburgMagdeburgGermany

Personalised recommendations