Skip to main content
Log in

Application of the stochastic finite element method in welding simulation

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Due to the uncertain microscopic structure of the material, the strength of the material exhibits strong randomness. This randomness results in uncertain response of the structure in the sequentially coupled thermal-mechanical analysis by welding simulation. Because of the limitations of deterministic welding simulation, the stochastic finite element method with random field will be introduced into the welding simulation, so that the welded structure can be more accurately calculated in the stability and reliability structural analysis. Particularly, it is necessary to propose reasonable distributions of residual stress from welding simulations based on statistical and reliability theories. This paper is intended to implement the stochastic finite element method in the welding simulation using a general-purpose simulation program and to demonstrate the potential of the proposed approach. Furthermore, the statistical distribution function of the welding simulation response is obtained by maximum entropy fitting method. Then, a numerical example is presented by the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

δ ij :

Kronecker symbol

θ :

primitive randomness

λ i :

i-th eigenvalue

λ n :

Lagrange multiplier

μ(X):

mean value

ξi(θ):

i-th random variable

ρ HH(X 1, X 2):

correlation function

σ 2 :

standard deviation

φ i(X):

i-th eigenfunction

ϕj(X):

j-th basic eigenfunction

(Ω, F, P):

probability space

A ij ,B ij :

K-L expansion matrices

C HH(X 1, X 2):

covariance function

E{ϕ n(x)}:

statistics moments

H :

Entropy

H(X, θ):

random field

Je :

mapping coefficient matrix

l D :

correlation length

M :

truncation order

X :

position vector

References

  1. Radaj D (2003) Welding residual stresses and distortion: calculation and measurement. Elsevier Science & Technology, Amsterdam

    Google Scholar 

  2. Der Kiureghian A, Ke J-B (1988) The stochastic finite element method in structural reliability. Probab Eng Mech 3:83–91

    Article  Google Scholar 

  3. Kamiński M, Świta P (2015) Structural stability and reliability of the underground steel tanks with the stochastic finite element method. Arch Civ Mech Eng 15:593–602

    Article  Google Scholar 

  4. Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198:1031–1051

    Article  Google Scholar 

  5. Vanmarcke E (2010) Random fields: analysis and synthesis. World Scientific, Singapore

    Book  Google Scholar 

  6. Shang S, Yun GJ (2013) Stochastic finite element with material uncertainties: implementation in a general purpose simulation program. Finite Elem Anal Des 64:65–78

    Article  Google Scholar 

  7. Li Z, Pasternak H (2016) Development of a stochastic material model at constant stress distribution in steel construction, in: XVI Int Sci Conf VSU, Sofia, pp 193–198

  8. Li Z, Pasternak H (2017) Reliability analysis of size effect on flexural members with stochastic finite element method. In: Bucher C, Ellingwood BR, Frangopol DM (eds) 12th Int. Conf. Struct. Saf. Reliab. TU-Verlag Vienna, Vienna, pp 778–787

    Google Scholar 

  9. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630

    Article  Google Scholar 

  10. Sudret B, Der Kiureghian A (2000) Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report

  11. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical Recipe-The Art of Scientific Computing. Cambridge University Press, Cambridge

    Google Scholar 

  12. Vořechovský M, Novák D (2005) Simulation of random fields for stochastic finite element analysis, Icossar 2005:2545–2552

  13. Li C-C, Der Kiureghian A (1993) Optimal discretization of random fields. J Eng Mech 119:1136–1154

    Article  Google Scholar 

  14. Betz W, Papaioannou I, Straub D (2014) Numerical methods for the discretization of random fields by means of the Karhunen–Loève expansion. Comput Methods Appl Mech Eng 271:109–129

    Article  Google Scholar 

  15. Shi X, Teixeira AP, Zhang J, Soares CG (2014) Structural reliability analysis based on probabilistic response modelling using the maximum entropy method. Eng Struct 70:106–116

    Article  Google Scholar 

  16. Mohammad-Djafari A (1992) A Matlab program to calculate the maximum entropy distributions. Maximum Entropy and Bayesian Methods 221:221–233

    Article  Google Scholar 

  17. Pasternak H, Launert B, Kannengießer T, Rhode M (2018) Erhöhung der Tragfähigkeit geschweißter I-Profile aus hochfestem Baustahl durch verbesserte Ansätze zur Berücksichtigung von Eigenspannungen (in German, En.: enhancement of load capacity of welded high-strength I-shape sections using improved design model

  18. Voß O (2001) Untersuchung relevanter Einflußgrößen auf die numerische Schweißsimulation. Technische Universität Braunschweig, Braunschweig

    Google Scholar 

  19. Peil M, Wichers U (2004) Schweißen unter Betriebsbeanspruchung - Werkstoffkennwerte für einen S355 J2G3 unter Temperaturen bis 1200°C. Stahlbau 73:400–416

    Article  Google Scholar 

  20. JCSS (2001) Probabilistic Model Code, PART III - Resistance models, Static Properties of Structural Steel

  21. Launert B, Rhode M, Kromm A, Pasternak H, Kannengiesser T (2017) Measurement and numerical modeling of residual stresses in welded HSLA component-like I-girders. Weld World 61:223–229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Li.

Additional information

Recommended for publication by Commission II - Arc Welding and Filler Metals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Launert, B. & Pasternak, H. Application of the stochastic finite element method in welding simulation. Weld World 62, 905–912 (2018). https://doi.org/10.1007/s40194-018-0596-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-018-0596-4

Keywords

Navigation