Welding in the World

, Volume 62, Issue 2, pp 363–375 | Cite as

Effect of welding on the corrosion behavior of X65/Inconel 625 in simulated solution

Research Paper


Due to excellent mechanical properties and corrosion resistance, the carbon steel/nickel-based alloy has huge potential for using in oil and gas industry. The pipes are usually joined by welding. Hence, it is significant to study the effect of welding on the corrosion properties. A literature search indicates that few studies have been conducted on the corrosion properties. Accordingly, in the present work, electrochemical measurements together with immersion tests were used to analyze the corrosion properties of Inconel 625 clad layers and butt-weld metal. The hardness was also determined. The microstructures, morphological features, and the changes observed in the surface composition were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), together with energy-dispersive spectroscopy (EDS). The microstructures of Inconel 625 clad layers and butt-weld metal consist of primary γ-Ni solid solution dendritic, γ/laves interdendritic eutectic. Because of the heat effect induced by multi-pass welding, element segregation and more participation of carbide were observed in the butt-weld metal, which could account for higher hardness and inferior corrosion resistance of the butt-weld metal as compared to the clad layer.


X65/Inconel 625 clad pipe Clad layer Butt-weld metal Microstructure Microhardness Corrosion resistance 



The authors acknowledge the research funding by the National Natural Science Foundation of China (Grant No. 51575382).


  1. 1.
    Pillai R, Ackermann H, Hattendorf H, Richter S (2013) Evolution of carbides and chromium depletion profiles during oxidation of alloy 602 CA. Corros Sci 75:28–37.  https://doi.org/10.1016/j.corsci.2013.05.013 CrossRefGoogle Scholar
  2. 2.
    Ignatiev V, Surenkov A, Gnidoy I, Kulakov A, Uglov V, Vasiliev A, Presniakov M (2013) Intergranular tellurium cracking of nickel-based alloys in molten Li, Be, Th, U/F salt mixture. J Nucl Mater 440(1-3):243–249.  https://doi.org/10.1016/j.jnucmat.2013.05.001 CrossRefGoogle Scholar
  3. 3.
    Chen MH, Shen ML, Zhu SL, Wang FH, Wang XL (2013) Effect of sand blasting and glass matrix composite coating on oxidation resistance of a nickel-based superalloy at 1000 degrees C. Corros Sci 73:331–341.  https://doi.org/10.1016/j.corsci.2013.04.022 CrossRefGoogle Scholar
  4. 4.
    Gill A, Telang A, Mannava SR, Qian D, Pyoun YS, Soyama H, Vasudevan VK (2013) Comparison of mechanisms of advanced mechanical surface treatments in nickel-based superalloy. Mater Sci Eng A 576:346–355.  https://doi.org/10.1016/j.msea.2013.04.021 CrossRefGoogle Scholar
  5. 5.
    Pouranvari M, Ekrami A, Kokabi AH (2013) Solidification and solid state phenomena during TLP bonding of IN718 superalloy using Ni-Si-B ternary filler alloy. J Alloy Compd 563:143–149.  https://doi.org/10.1016/j.jallcom.2013.02.100 CrossRefGoogle Scholar
  6. 6.
    Ogino S, Ohashi T, Kasuya N, Yoshida M (2013) Tensile rate dependency of mechanical properties of Inconel 718 nickel-based superalloy around solidus temperature. J Jpn I Met 77(5):170–173.  https://doi.org/10.2320/jinstmet.J2012054 CrossRefGoogle Scholar
  7. 7.
    Chapovaloff J, Rouillard F, Wolski K, Pijolat M (2013) Kinetics and mechanism of reaction between water vapor, carbon monoxide and a chromia-forming nickel base alloy. Corros Sci 69:31–42.  https://doi.org/10.1016/j.corsci.2012.09.045 CrossRefGoogle Scholar
  8. 8.
    Friend WZ (1980) Corrosion of nickel and nickel-base alloys. John Wiley and Sons, New YorkGoogle Scholar
  9. 9.
    Clayton CR, Lu YC (1989) A bipolar model of the passivity of stainless steels-III. The mechanism of MoO4 2− formation and incorporation. Corros Sci 29(7):881–898.  https://doi.org/10.1016/0010-938X(89)90059-0 CrossRefGoogle Scholar
  10. 10.
    Jakupi P, Wang F, Noel JJ (2011) Shoesmith: corrosion product analysis on crevice corroded alloy-22 specimens. Corros Sci 53(5):1670–1679.  https://doi.org/10.1016/j.corsci.2011.01.028 CrossRefGoogle Scholar
  11. 11.
    Habicht W, Boukis N, Hauer E, Dinjus E (2011) Analysis of hydrothermally formed corrosion layers in Ni-base alloy 625 by combined FE-SEM and EDXS. X-Ray Spectrom 40(2):69–73.  https://doi.org/10.1002/xrs.1297 CrossRefGoogle Scholar
  12. 12.
    Jakupi P, Zagidulin D, Noel JJ, Shoesmith DW (2011) The impedance properties of the oxide film on the Ni-Cr-Mo Alloy-22 in neutral concentrated sodium chloride solution. Electrochim Acta 56(17):6251–6259.  https://doi.org/10.1016/j.electacta.2010.07.064 CrossRefGoogle Scholar
  13. 13.
    Kim H, Mitton DB, Latanision RM (2010) Effect of pH and temperature on corrosion of Nickel-Base alloys in high temperature and pressure aqueous solutions. J Electrochem Soc 157(5):C194.  https://doi.org/10.1149/1.3337230 CrossRefGoogle Scholar
  14. 14.
    Cui Y, Lundin CD (2007) Austenite-preferential corrosion attack in 316 austenitic stainless steel weld metals. Mater Des 28(1):324–328.  https://doi.org/10.1016/j.matdes.2005.05.022 CrossRefGoogle Scholar
  15. 15.
    DuPont J (1996) Solidification of an alloy 625 weld overlay. Metall Mater Trans A 27(11):3612–3620.  https://doi.org/10.1007/BF02595452 CrossRefGoogle Scholar
  16. 16.
    Cieslak WMJ, Ritter AM, Savage WF (1982) Solidification cracking and analytical electron-microscopy of austenitic stainless-steel weld metals. Weld J 61:1s–8sGoogle Scholar
  17. 17.
    Lee HT, Wu JL (2009) The effects of peak temperature and cooling rate on the susceptibility to intergranular corrosion of alloy 690 by laser beam and gas tungsten arc welding. Corros Sci 51(3):439–445.  https://doi.org/10.1016/j.corsci.2009.01.002 CrossRefGoogle Scholar
  18. 18.
    Ogborn JS, Olson DL, Cieslak MJ (1995) Influence of solidification on the microstructural evolution of nickel base weld metal. Mater Sci Eng A 203(1-2):134–139.  https://doi.org/10.1016/0921-5093(95)09832-1 CrossRefGoogle Scholar
  19. 19.
    Dupont JN, Stockdale AW, Caizza A, Esposito A (2013) High-temperature corrosion behavior of alloy 600 and 622 weld claddings and coextruded coatings. Weld J 92:218Google Scholar
  20. 20.
    Mohammadi Zahrani E, Alfantazi AM (2013) Hot corrosion of Inconel 625 overlay weld cladding in smelting off-gas environment. Metall Mater Trans A 44A:4671CrossRefGoogle Scholar
  21. 21.
    Zareie Rajani HR, Akbari Mousavi SAA, Madani Sani F (2013) Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates. Mater Des 43:467–474.  https://doi.org/10.1016/j.matdes.2012.06.053 CrossRefGoogle Scholar
  22. 22.
    Xu LY, Li M, Jing HY, Han YD (2013) Electrochemical behavior of corrosion resistance of X65/Inconel 625 welded joints. Int J Electrochem Sci 8:2069Google Scholar
  23. 23.
    API standard 1104 (2013) Welding of pipelines and related facilities, 21st edn. API, Washington, DCGoogle Scholar
  24. 24.
    Knorovsky G, Cieslak M, Headley T, Romig A, Hammetter W (1989) Inconel-718—a solidification diagram. Metall Mater Trans A 20(10):2149–2158.  https://doi.org/10.1007/BF02650300 CrossRefGoogle Scholar
  25. 25.
    Kai JJ, Liu MN (1989) The effects of heat-treatment on the carbide evolution and the chromium depletion along grain-boundary of inconel-690 alloy. Scr Metall 23(1):17–22.  https://doi.org/10.1016/0036-9748(89)90085-9 CrossRefGoogle Scholar
  26. 26.
    Gündüz S, Cochrane RC (2005) Influence of cooling rate and tempering on precipitation and hardness of vanadium micro alloyed steel. Mater Des 26(6):486–492.  https://doi.org/10.1016/j.matdes.2004.07.022 CrossRefGoogle Scholar
  27. 27.
    Chou YL, Yeh JW, Shih HC (2010) The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments. Corros Sci 52(8):2571–2581.  https://doi.org/10.1016/j.corsci.2010.04.004 CrossRefGoogle Scholar
  28. 28.
    Lo I, Tsai W (2003) Effect of heat treatment on the precipitation and pitting corrosion behavior of 347 SS weld overlay. Mater Sci Eng A 355(1-2):137–143.  https://doi.org/10.1016/S0921-5093(03)00078-9 CrossRefGoogle Scholar

Copyright information

© International Institute of Welding 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Tianjin Key Laboratory of Advanced JoiningTianjinPeople’s Republic of China

Personalised recommendations