Skip to main content
Log in

Cycles of triply coupled mechanical contact, current, and thermal conduction phenomena during resistance spot welding

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The characteristics of the cycles of coupled phenomena that occur among elastic-plastic contact deformation, current distribution, heat generation, and thermal conduction during resistance spot welding are examined using coupled finite element analyses. The current density peak that appears at the center of the interface moves outward along the interface to the high-contact resistance region, then the peaks in the current density, contact resistance, Joule heat generation, and temperature migrate outward with the contact edge followed by the melting zone during the welding process. The influence of welding parameters on the cycles of coupled phenomena is also examined. When the weld current is increased, the current density within the contact surface does not increase but enlarges the high-temperature region instead of heating the central part of the interface. When a small electrode force is applied, the nugget formation is initially enhanced not due to the increased contact resistance but rather because of the increase in the current density through the interface with a reduced contact area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Babu S, Santella M, Feng Z, Riemer B, Cohron J (2001) . Sci Technol Weld Joining 6(3):126. https://doi.org/10.1179/136217101101538631

    Article  Google Scholar 

  2. Zhang W (2006) . Weld World 50(3):29. https://doi.org/10.1007/BF03263430

    Article  Google Scholar 

  3. Feulvarch E, Rogeon P, Carré P, Robin V, Sibilia G, Bergheau J (2006) . Numer Heat Transfer; Part A: Appl 49(4):345. https://doi.org/10.1080/10407780500359760

    Article  Google Scholar 

  4. Hou Z, Kim IS, Wang Y, Li C, Chen C (2007) . J Mater Process Technol 185(1-3):160. https://doi.org/10.1016/j.jmatprotec.2006.03.143

    Article  Google Scholar 

  5. Eisazadeh H, Hamedi M, Halvaee A (2010) . Mater Des 31(1):149 . https://doi.org/10.1016/j.matdes.2009.06.042

    Article  Google Scholar 

  6. Ma N, Murakawa H (2010) . J Mater Process Technol 210(14): 2045. https://doi.org/10.1016/j.jmatprotec.2010.07.025

    Article  Google Scholar 

  7. Shen J, Zhang Y, Lai X, Wang P (2011) . Mater Des 32(2):550 . https://doi.org/10.1016/j.matdes.2010.08.023

    Article  Google Scholar 

  8. Iyota M, Mikami Y, Hashimoto T, Taniguchi K, Ikeda R, Mochizuki M (2012) J Phys: Conf Series 379(1). https://doi.org/10.1088/1742-6596/379/1/012051

  9. Raoelison R, Fuentes A, Rogeon P, Carré P, Loulou T, Carron D, Dechalotte F (2012) . J Mater Process Technol 212(8):1663. https://doi.org/10.1016/j.jmatprotec.2012.03.009

    Article  Google Scholar 

  10. Wan Z, Wang HP, Wang M, Carlson BE, Sigler DR (2016) . Int J Heat Mass Transfer 101(Supplement C):749. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.023

    Article  Google Scholar 

  11. Moshayedi H, Sattari-Far I (2012) . J Mater Process Technol 212(2):347. https://doi.org/10.1016/j.jmatprotec.2011.09.004

    Article  Google Scholar 

  12. Wan X, Wang Y, Zhang P (2014) . J Mater Process Technol 214 (11):2723. https://doi.org/10.1016/j.jmatprotec.2014.06.009

    Article  Google Scholar 

  13. Pakkanen J, Vallant R, Kičin M (2016) . Weld World 60(3):393. https://doi.org/10.1007/s40194-016-0301-4

    Article  Google Scholar 

  14. Niho T, Horie T, Morita Y, Ishihara D, Yamakawa D, Momii S (2015) . Yosetsu Gakkai Ronbunshu/Q J Jpn Weld Soc 33(3):271. https://doi.org/10.2207/qjjws.33.271

    Google Scholar 

  15. Niho T, Horie T, Uefuji J, Ishihara D (2017) . Comput Struct 178: 129. https://doi.org/10.1016/j.compstruc.2016.09.003

    Article  Google Scholar 

  16. Rolph WD, Bathe KJ (1982) . Int J Numer Methods Eng 18(1):119. https://doi.org/10.1002/nme.1620180111

    Article  Google Scholar 

  17. MSC.Software, Marc 2012 volume a: theory and user information. MSC Software (2012)

  18. Greenwood J (1966) . British J Appl Phys 17(12):1621. https://doi.org/10.1088/0508-3443/17/12/310

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude for cooperation of TOYOTA MOTOR KYUSHU Inc.

Funding

This work was supported by JSPS KAKENHI grant number 16K05043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyoshi Horie.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III - Resistance Welding, Solid State Welding, and Allied Joining Process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horie, T., Niho, T., Hayashi, N. et al. Cycles of triply coupled mechanical contact, current, and thermal conduction phenomena during resistance spot welding. Weld World 63, 701–713 (2019). https://doi.org/10.1007/s40194-018-00699-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-018-00699-5

Keywords

Navigation