Welding in the World

, Volume 62, Issue 2, pp 277–287 | Cite as

Hydrogen trapping in T24 Cr-Mo-V steel weld joints—microstructure effect vs. experimental influence on activation energy for diffusion

  • Michael Rhode
  • Tobias Mente
  • Enrico Steppan
  • Joerg Steger
  • Thomas Kannengiesser
Research Paper


Hydrogen-assisted cracking is a critical combination of local microstructure, mechanical load and hydrogen concentration. Welded microstructures of low-alloyed creep-resistant Cr-Mo-V steels show different hydrogen trapping kinetics. This influences the adsorbed hydrogen concentration as well as the diffusion by moderate or strong trapping. A common approach to describe hydrogen traps is by their activation energy that is necessary to release hydrogen from the trap. In the present study, Cr-Mo-V steel T24 (7CrMoVTiB10-10) base material and TIG weld metal were investigated. Electrochemically hydrogen charged specimens were analyzed by thermal desorption analysis (TDA) with different linear heating rates. The results show two different effects. At first, the microstructure effect on trapping is evident in terms of higher hydrogen concentrations in the weld metal and increased activation energy for hydrogen release. Secondly, it is necessary to monitor the real specimen temperature. A comparison between the adjusted heating rate and the real specimen temperature shows that the calculated activation energy varies by factor two. Thus, the trap character in case of the base material changes to irreversible at decreased temperature. Hence, the effect of the experimental procedure must be considered as well if evaluating TDA results. Finally, realistic temperature assessment is mandatory for calculation of activation energy via TDA.


Creep-resisting materials Diffusion Experiment design Hydrogen embrittlement Weld metal 



The authors want to thank Mr. Klaus Scheideck and Mr. Michael Richter for the conduction of the weld experiments and machining the manifold specimens. Mrs. Stefanie Groth is thanked for her assistance in performing the electrochemical charging experiments.


  1. 1.
    Hahn B, Bendick W (2008) Rohrstähle für moderne Hochleistungskraftwerke. 3R international 47:3–12Google Scholar
  2. 2.
    Heuser H, Jochum C (2002) Characterization of matching filler metals for new ferritic-bainitic steels like T/P 23 and T/P 24. In: Lecomte-Beckers J, Carton M, Schubert F, Ennis PJ (eds) Materials for advanced power engineering 2002. Forschungszentrum Jülich, Jülich, GermanyGoogle Scholar
  3. 3.
    Dhooge A, Vekeman J (2005) New generation 21/4Cr steels T/P 23 and T/P 24 weldability and high temperature properties. Weld World 49(9-10):75–93. CrossRefGoogle Scholar
  4. 4.
    Nowack R, Goette C, Heckmann S (2011) Quality management at RWE using T24 boiler material as an example (in German). VGB Powertech Journal 11:1–5Google Scholar
  5. 5.
    Husemann RU, Devrient S, Kilian R (2012) Cracking mechanism in high temperature water-T24 root cause analysis program. In: NN 38th VDI-Jahrestagung Schadensanalyse in Kraftwerken. VDI-Wissensforum, Düsseldorf, Germany, pp 87–103Google Scholar
  6. 6.
    Hoffmeister H, Boellinghaus T (2014) Modeling of combined anodic dissolution/hydrogen-assisted stress corrosion cracking of low-alloyed power plant steels in high-temperature water environments. Corros Sci 70(6):563–578. CrossRefGoogle Scholar
  7. 7.
    Garet M, Brass AM, Haut C, Guttierez-Solana F (1998) Hydrogen trapping on non-metallic inclusions in Cr-Mo low alloyed steels. Corros Sci 40(7):1073–1086. CrossRefGoogle Scholar
  8. 8.
    Albert SK, Ramasubbu V, Parvathavarthini N, Gill TPS (2003) Influence of alloying on hydrogen-assisted cracking and diffusible hydrogen content in Cr-Mo steel welds. Sadhana 28(3-4):383–393. CrossRefGoogle Scholar
  9. 9.
    Steppan E, Mantzke P, Steffens BR, Rhode M, Kannengiesser T (2017) Thermal desorption analysis for hydrogen trapping in microalloyed high-strength steels. Weld World 61(4):637–648. CrossRefGoogle Scholar
  10. 10.
    ISO 17462-1:2004 Destructive tests on welds in metallic materials—cold cracking tests for weldments—arc welding processes, part 1: generalGoogle Scholar
  11. 11.
    Blach J, Falat F, Sevc P (2011) The influence of hydrogen charging on the notch tensile properties and fracture behavior on dissimilar weld joints of advanced Cr-Mo-V and Cr-Ni-Mo creep resistant steels. Eng Fail Anal 18(1):485–491. CrossRefGoogle Scholar
  12. 12.
    Dayal RK, Parvathavarthini N (2003) Hydrogen embrittlement in power plant steels. Sadhana 28(3-4):431–451. CrossRefGoogle Scholar
  13. 13.
    Rhode M, Steger J, Boellinghaus T, Kannengiesser T (2016) Hydrogen degradation effects on mechanical properties in T24 weld microstructures. Weld World 60(2):201–216. CrossRefGoogle Scholar
  14. 14.
    Nevasmaa P, Laukanen A (2005) Assessment of hydrogen cracking risk in multipass weld metal of 2.25Cr-1Mo-0.25V-TiB (T24) boiler steel. Weld World 49(7-8):45–58. CrossRefGoogle Scholar
  15. 15.
    Pressouryre GM (1979) A classification of hydrogen traps in steel. Metall Trans A 10(10):1571–1573. CrossRefGoogle Scholar
  16. 16.
    Grabke HJ, Riecke E (2000) Absorption and diffusion of hydrogen in steels. Mater Tehnol 34(6):331–342Google Scholar
  17. 17.
    Hirth JP (1980) Effects of hydrogen on the properties of iron and steel. Metall Trans A 11(6):861–890. CrossRefGoogle Scholar
  18. 18.
    McNabb A, Foster PK (1963) A new analysis of the diffusion of hydrogen in iron and ferritic steels. Trans Met Soc AIME 227:618–627Google Scholar
  19. 19.
    Coudreuse L, Bocquet P, Cheviet L (1992) Hydrogen trapping in Cr-Mo steels for hydro processing reactors. PVP-Vol. 239/ MPC-Vol. 33, Serviceability of Petroleum, Process and Power Equipment, ASMEGoogle Scholar
  20. 20.
    Brouwer RC (1993) Hydrogen concentration distribution in the wall of pressure vessels made of conventional and V-modified steels. Int J Pres Ves Pip 56(2):133–148. CrossRefGoogle Scholar
  21. 21.
    Brouwer RC (1992) Hydrogen diffusion and solubility in vanadium modified pressure vessel steels. Scripta Metall Mater 27(3):353–358. CrossRefGoogle Scholar
  22. 22.
    Coudreuse L, Bocquet P (1995) Hydrogen diffusion and trapping in Cr-Mo steels in hydrotreating reactors. In: Turnbull A (ed) Hydrogen transport and cracking un metals. Maney Publishing, London, United Kingdom, pp 227–239Google Scholar
  23. 23.
    Brass AM, Guillon F, Vivet S (2004) Quantification of hydrogen diffusion and trapping in 2.25Cr-1Mo and 3Cr-1Mo-V steels with electrochemical permeation technique and melt extraction. Metall Mater Trans A 35(5):1449–1464. CrossRefGoogle Scholar
  24. 24.
    Parvathavarthini N, Saroja S, Dayal RK, Khatak HS (2001) Studies on hydrogen permeability of 2.25%Cr-1%Mo ferritic steel: correlation with microstructure. J Nucl Mater 288(2-3):187–196. CrossRefGoogle Scholar
  25. 25.
    Wei FG, Tsuzaki K (2005) Response of hydrogen trapping capability to microstructural change in tempered Fe-0.2C martensite. Scr Mater 52(6):467–472. CrossRefGoogle Scholar
  26. 26.
    Nagao A, Martin ML, Dadfarnia M, Sofronis P, Robertson IM (2014) The effect of nanosized (Ti,Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel. Acta Mater 74(1):244–254. CrossRefGoogle Scholar
  27. 27.
    Rhode M (2016) Hydrogen diffusion and effect on degradation in welded microstructures of creep-resistant low-alloyed steels. BAM-Dissertationsreihe 148, Berlin, GermanyGoogle Scholar
  28. 28.
    EN 1011-2:2011 - Welding—recommendations for welding of metallic materials, part 2: arc welding of ferritic steelsGoogle Scholar
  29. 29.
    Abe M, Nakatani N, Namatame N, Terasaki T (2012) Influence of dehydrogenation heat treatment on hydrogen distribution in multi-layer welds of Cr-Mo-V steel. Weld World 56(5-6):114–123. CrossRefGoogle Scholar
  30. 30.
    Mente T, Boellinghaus T, Schmitz-Niederau M (2012) Heat treatment effects on the reduction of hydrogen in multi-layer high-strength weld joints. Weld World 56(7-8):26–36. CrossRefGoogle Scholar
  31. 31.
    Salmi S, Rhode M, Juettner S, Zinke M (2015) Hydrogen determination in 22MnB5 steel grade by use of carrier gas hot extraction technique. Weld World 59(1):137–144. CrossRefGoogle Scholar
  32. 32.
    Escobar DP et al (2012) Evaluation of hydrogen trapping in high-strength steels by thermal desorption spectroscopy. Mater Sci Eng A 551:50–58. CrossRefGoogle Scholar
  33. 33.
    Nagumo M, Nakamura M, Takai K (2001) Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steels. Metall Mater Trans A 32(2):339–347. CrossRefGoogle Scholar
  34. 34.
    Frappart S, Oudriss A, Feaugas X, Creus J, Bouhattate J, Thébault F, Delattre L, Marchebois H (2011) Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy. Sci Mater 65(10):859–862. Google Scholar
  35. 35.
    Enomoto M, Hirakami D, Tarui T (2011) Thermal desorption analysis of hydrogen in high strength martensitic steels. Metall Trans A 43A(2):572–581. Google Scholar
  36. 36.
    Crank J (1979) The mathematics of diffusion. Oxford University Press, Oxford, United KingdomGoogle Scholar
  37. 37.
    Rhode M, Steger J, Steppan E, Kannengiesser T (2016) Effect of hydrogen on mechanical properties of heat affected zone of a reactor pressure vessel steel grade. Weld World 60(4):623–638. CrossRefGoogle Scholar
  38. 38.
    Zakroczymski T, Glowacka A, Swiatnicki W (2005) Effect of hydrogen concentration on the embrittlement of a duplex stainless steel. Corros Sci 47(6):1403–1414. CrossRefGoogle Scholar
  39. 39.
    Rhode M, Steger J, Kannengießer T (2014) Approach for calculation of apparent hydrogen diffusion coefficients with permeation experiments in CrMoV steel weld joints, Proceedings of the Steel & Hydrogen 2014, Ghent, Belgium, p 670–674Google Scholar
  40. 40.
    Schaupp T, Rhode M, Kannengiesser T (2017) Influence of welding parameters on diffusible hydrogen content in high-strength steel welds using modified spray arc process. Weld World 1–10 (online first 12–08-2017). doi:
  41. 41.
    Choo WY, Lee JY (1982) Thermal analysis of trapped hydrogen in pure iron. Metall Trans A 13A(1):135–140. CrossRefGoogle Scholar
  42. 42.
    Griesche A, Dabah E, Kannengiesser T, Kardjilov N, Hilger A, Manke I (2014) Three-dimensional imaging of hydrogen blister in iron with neutron tomography. Acta Mater 78:14–22. CrossRefGoogle Scholar
  43. 43.
    Perez-Escobar D, Minambres C, Duprez L, Verbeken K, Verhaege M (2011) Internal and surface damage of multiphase steels and pure iron after electrochemical hydrogen charging. Corros Sci 53(10):3166–3176. CrossRefGoogle Scholar
  44. 44.
    Frappart S, Oudriss A, Feaugas X, Creus J, Bouhattate J, Thebault F, Delattre L, Marchebois H (2011) Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy. Scripta Mater 65(10):859–862. CrossRefGoogle Scholar
  45. 45.
    Legrand E, Oudriss A, Frappart S, Creus J, Feaugas X, Bouhattate J (2014) Computational analysis of geometrical factors affecting experimental data extracted from hydrogen permeation tests: III—comparison with experimental results from the literature. Int J Hydrog Energy 39(2):1145–1155. CrossRefGoogle Scholar
  46. 46.
    Pesicka J, Kuzel R, Dronhofer A, Eggeler G (2003) The evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels. Acta Mater 51(16):4847–4862. CrossRefGoogle Scholar
  47. 47.
    Padhy GK, Komizo YI (2013) Diffusible Hydrogen in steel weldments - a status review. Trans JWRI 42(1):39–62Google Scholar
  48. 48.
    Asashi H, Hirakami D, Yamasaki S (2003) Hydrogen trapping behavior in vanadium-added steel. ISIJ Int 43(4):527–533. CrossRefGoogle Scholar
  49. 49.
    Takai K, Chiba Y, Noguchi K, Nozue A (2002) Visualization of the hydrogen desorption process from ferrite, pearlite, and graphite by secondary ion mass spectrometry. Metall Mater Trans A 33(8):2659–2665. CrossRefGoogle Scholar
  50. 50.
    Perez-Escobar D, Verbeken K, Duprez L, Verhaege M (2012) Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy. Mater Sci Eng A 551:50–58. CrossRefGoogle Scholar
  51. 51.
    Paddea S, Masuyama F, Shibli (2014) T24 and T24—new generation of low alloyed steels. In: Shibli A (ed) Coal power plant materials and life assessment, developments and applications. Woodhead Publishing Ltd., Cambridge, United Kingdom.
  52. 52.
    Liu Y, Wang M, Liu G (2013) Hydrogen trapping in high strength martensitic steel after austenitized at different temperatures. Intl J Hydrogen Energy 38(33):14364–14368. CrossRefGoogle Scholar

Copyright information

© International Institute of Welding 2018

Authors and Affiliations

  1. 1.Bundesanstalt für Materialforschung und -prüfung (BAM)BerlinGermany

Personalised recommendations