Welding in the World

, Volume 62, Issue 2, pp 229–241 | Cite as

Automated identification of defect geometry for metallic part repair by an additive manufacturing process

  • Jean-Yves Hascoët
  • Stéphane TouzéEmail author
  • Matthieu Rauch
Research Paper
Part of the following topical collections:
  1. Welding, Additive Manufacturing and Associated NDT


This paper presents a method to partially automate the repair process of metallic parts, such as aluminum castings, by using a machine vision system and an additive manufacturing process such as LMD (laser metal deposition). This method is based on a modified RANSAC (RANdom SAmple Consensus) algorithm and an intersection operation that enables the automated segmentation of repair volumes of canonical shape within a range dataset. To illustrate the working principle of the present method, an experiment is described where a 2D laser triangulation device scans a cavity machined in an aluminum workpiece. Despite the inevitable errors and noise in the range data, the repair volume and its edge features are robustly and accurately extracted. Scan paths can then be generated and turned into machine code for refilling the repair volume by an LMD additive manufacturing process.

Keywords (IIW Thesaurus)

Repair Pattern recognition Powder Cladding Deposited metal Aluminum alloys 


  1. 1.
    Sexton L, Lavin S, Byrne G, Kennedy A (2002) Laser cladding of aerospace materials. J Mater Process Technol 122(1):63–68CrossRefGoogle Scholar
  2. 2.
    A. J. Pinkerton, W. Wang, and L. Li (2008) Component repair using laser direct metal deposition, vol. 222, no. September 2007, pp. 827–836Google Scholar
  3. 3.
    Wilson JM, Piya C, Shin YC, Zhao F, Ramani K (2014) Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J Clean Prod 80:170–178CrossRefGoogle Scholar
  4. 4.
    C. Piya, J. M. Wilson, S. Murugappan, Y. Shin, and K. Ramani (2011) Virtual repair: geometric reconstruction for remanufacturing gas, in Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Design for Manufacturing and the Life Cycle Conference, IDETC/CIE 2011, pp. 1–10Google Scholar
  5. 5.
    Pinkerton AJ (2010) Laser direct metal deposition: theory and applications in manufacturing and maintenance. Adv Laser Mater Process Technol Res Appl 16:461–491CrossRefGoogle Scholar
  6. 6.
    Graf B, Gumenyuk A, Rethmeier M (2012) Laser metal deposition as repair technology for stainless steel and titanium alloys. Phys Procedia 39:376–381CrossRefGoogle Scholar
  7. 7.
    Petrat T, Graf B, Gumenyuk A, Rethmeier M (2016) Laser metal deposition as repair technology for a gas turbine burner made of inconel 718. Phys Procedia 83:761–768CrossRefGoogle Scholar
  8. 8.
    Gao J, Chen X, Zheng D, Yilmaz O, Gindy N (2006) Adaptive restoration of complex geometry parts through reverse engineering application. Adv Eng Softw 37(9):592–600CrossRefGoogle Scholar
  9. 9.
    Gao J, Chen X, Yilmaz O, Gindy N (2008) An integrated adaptive repair solution for complex aerospace components through geometry reconstruction. Int J Adv Manuf Technol 36(11–12):1170–1179CrossRefGoogle Scholar
  10. 10.
    Bremer C (2005) Automated repair and overhaul of aero-engine and industrial gas turbine components. Proc ASME Turbo Expo 2005 Vol 2:841–846CrossRefGoogle Scholar
  11. 11.
    Yilmaz O, Gindy N, Gao J (2010) A repair and overhaul methodology for aeroengine components. Robot Comput Integr Manuf 26(2):190–201CrossRefGoogle Scholar
  12. 12.
    J. B. Jones, P. McNutt, R. Tosi, C. Perry, and D. I. Wimpenny (2012) Remanufacture of turbine blades by laser cladding, machining and in-process scanning in a single machine, 23rd Annu Int Solid Free Fabr Symp Austin, Texas, USA, pp. 821–827Google Scholar
  13. 13.
    Zhang Y, Yang Z, He G, Qin Y, Zhang HC (2015) Remanufacturing-oriented geometric modelling for the damaged region of components. Procedia CIRP 29:798–803CrossRefGoogle Scholar
  14. 14.
    Gao J, Folkes J, Yilmaz O, Gindy N (2005) Investigation of a 3D non-contact measurement based blade repair integration system. Aircr Eng Aerosp Technol 77(1):34–41(8)CrossRefGoogle Scholar
  15. 15.
    Chen XQ, Wang D, Li HZ (2009) A hybrid method of reconstructing 3D airfoil profile from incomplete and corrupted optical scans. Int J Mechatronics Manuf Syst 2(1–2):39–57Google Scholar
  16. 16.
    Tao W, Huapeng D, Hao W, Jie T (2015) Virtual remanufacturing: cross-section curve reconstruction for repairing a tip-defective blade. Proc Inst Mech Eng Part C J Mech Eng Sci 0(0):1–12Google Scholar
  17. 17.
    Wu H, Gao J, Li S, Zhang Y, Zheng D (2013) A review of geometric reconstruction algorithm and repairing methodologies for gas turbine components. Telkomnika 11(3):1609–1618CrossRefGoogle Scholar
  18. 18.
    Wang Y, Feng HY (2014) Modeling outlier formation in scanning reflective surfaces using a laser stripe scanner. Meas J Int Meas Confed 57:108–121CrossRefGoogle Scholar
  19. 19.
    Wang Y, Feng HY (2016) Effects of scanning orientation on outlier formation in 3D laser scanning of reflective surfaces. Opt Lasers Eng 81:35–45CrossRefGoogle Scholar
  20. 20.
    Trucco E, Fisher RB, Fitzgibbon AW, Naidu DK (1998) Calibration, data consistency and model acquisition with laser stripers. Int J Comput Integr Manuf 11(4):293–310CrossRefGoogle Scholar
  21. 21.
    Kerninon J, Mognol P, Hascoet J-Y, Legonidec C (2008) Effect of path strategies on metallic parts manufactured by additive process. Solid Free Fabr Symp:352–361Google Scholar
  22. 22.
    Boisselier D, Sankaré S, Engel T (2014) Improvement of the laser direct metal deposition process in 5-axis configuration. Phys Procedia 56(C):239–249Google Scholar
  23. 23.
    Mery D (2006) Automated radioscopic inspection of aluminium die castings. Mater Eval 65(6):643–647Google Scholar
  24. 24.
    Rauch M, Hascoet JY (2007) Rough pocket milling with trochoidal and plunging strategies. Int J Mach Mach Mater 2(2):161–175Google Scholar
  25. 25.
    Rauch M, Duc E, Hascoet JY (2009) Improving trochoidal tool paths generation and implementation using process constraints modelling. Int J Mach Tools Manuf 49(5):375–383CrossRefGoogle Scholar
  26. 26.
    Rauch M, Hascoet JY (2012) Selecting a milling strategy with regard to the machine tool capabilities: application to plunge milling. Int J Adv Manuf Technol 59(1–4):47–54CrossRefGoogle Scholar
  27. 27.
    Tabernero I, Calleja A, Lamikiz A, López De Lacalle LN (2013) Optimal parameters for 5-axis Laser cladding. Procedia Eng 63:45–52CrossRefGoogle Scholar
  28. 28.
    Calleja A, Tabernero I, Fernández A, Celaya A, Lamikiz A, López De Lacalle LN (2014) Improvement of strategies and parameters for multi-axis laser cladding operations. Opt Lasers Eng 56:113–120CrossRefGoogle Scholar
  29. 29.
    Fischler M, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395CrossRefGoogle Scholar
  30. 30.
    Torr PHS, Zisserman A (2000) MLESAC: a new robust estimator with application to estimating image geometry. Comput Vis Image Underst 78(1):138–156CrossRefGoogle Scholar
  31. 31.
    Lebeda K, Matas JJ, Chum O (2012) Fixing the locally optimized RANSAC. Proc Br Mach Vis Conf 2012:95.1–95.11Google Scholar
  32. 32.
    Hast A, Nysjö J, Marchetti A (2013) Optimal RANSAC—towards a repeatable algorithm for finding the optimal set. J WSCG 21(1):21–30Google Scholar
  33. 33.
    S. Berra, J. Etcheverry, and N. Bonadeo (2007) Laser displacement sensor characterization for use in optical gauging of threaded pipesGoogle Scholar
  34. 34.
    Chum O, Matas J, Kittler J (2003) Locally optimized RANSAC. Proc DAGM 2781:236–243Google Scholar
  35. 35.
    D. Myatt, P. Torr, J. Bishop, and R. Craddock, Napsac: high noise, high dimensional model parameterisation-It'S in the Bag, Doc.Gold.Ac.Uk, pp. 1–9Google Scholar
  36. 36.
    Bešić I, Van Gestel N, Kruth JP, Bleys P, Hodolič J (2011) Accuracy improvement of laser line scanning for feature measurements on CMM. Opt Lasers Eng 49(11):1274–1280CrossRefGoogle Scholar
  37. 37.
    Yaniv Z (2010) Random sample consensus ( RANSAC ) algorithm, a generic implementation. Inf Syst:1–14Google Scholar
  38. 38.
    Lazard S, Peñaranda LM, Petitjean S (2006) Intersecting quadrics: an efficient and exact implementation. Comput Geom Theory Appl vol. 35(1–2 SPEC ISS):74–99CrossRefGoogle Scholar
  39. 39.
    Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM Trans Math Softw 22(4):469–483CrossRefGoogle Scholar
  40. 40.
    Bloomenthal J (1988) Polygonization of implicit surfaces. Comput. Aided Geom. Des. 5(4):341–355CrossRefGoogle Scholar
  41. 41.
    Bloomenthal J (1994) An implicit surface polygonizer. Graph gems IV 1:324–349CrossRefGoogle Scholar
  42. 42.
    Rodrigues De Araújo B, Armando Pires Jorge J (2005) Adaptive polygonization of implicit surfaces. Comput Graph 29(5):686–700CrossRefGoogle Scholar

Copyright information

© International Institute of Welding 2017

Authors and Affiliations

  1. 1.Institut de Recherche en Génie Civil et Mécanique (GeM), UMR CNRS 6183Ecole Centrale de NantesNantesFrance

Personalised recommendations