Skip to main content
Log in

Automated identification of defect geometry for metallic part repair by an additive manufacturing process

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

This paper presents a method to partially automate the repair process of metallic parts, such as aluminum castings, by using a machine vision system and an additive manufacturing process such as LMD (laser metal deposition). This method is based on a modified RANSAC (RANdom SAmple Consensus) algorithm and an intersection operation that enables the automated segmentation of repair volumes of canonical shape within a range dataset. To illustrate the working principle of the present method, an experiment is described where a 2D laser triangulation device scans a cavity machined in an aluminum workpiece. Despite the inevitable errors and noise in the range data, the repair volume and its edge features are robustly and accurately extracted. Scan paths can then be generated and turned into machine code for refilling the repair volume by an LMD additive manufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sexton L, Lavin S, Byrne G, Kennedy A (2002) Laser cladding of aerospace materials. J Mater Process Technol 122(1):63–68

    Article  Google Scholar 

  2. A. J. Pinkerton, W. Wang, and L. Li (2008) Component repair using laser direct metal deposition, vol. 222, no. September 2007, pp. 827–836

  3. Wilson JM, Piya C, Shin YC, Zhao F, Ramani K (2014) Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J Clean Prod 80:170–178

    Article  Google Scholar 

  4. C. Piya, J. M. Wilson, S. Murugappan, Y. Shin, and K. Ramani (2011) Virtual repair: geometric reconstruction for remanufacturing gas, in Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Design for Manufacturing and the Life Cycle Conference, IDETC/CIE 2011, pp. 1–10

  5. Pinkerton AJ (2010) Laser direct metal deposition: theory and applications in manufacturing and maintenance. Adv Laser Mater Process Technol Res Appl 16:461–491

    Article  Google Scholar 

  6. Graf B, Gumenyuk A, Rethmeier M (2012) Laser metal deposition as repair technology for stainless steel and titanium alloys. Phys Procedia 39:376–381

    Article  Google Scholar 

  7. Petrat T, Graf B, Gumenyuk A, Rethmeier M (2016) Laser metal deposition as repair technology for a gas turbine burner made of inconel 718. Phys Procedia 83:761–768

    Article  Google Scholar 

  8. Gao J, Chen X, Zheng D, Yilmaz O, Gindy N (2006) Adaptive restoration of complex geometry parts through reverse engineering application. Adv Eng Softw 37(9):592–600

    Article  Google Scholar 

  9. Gao J, Chen X, Yilmaz O, Gindy N (2008) An integrated adaptive repair solution for complex aerospace components through geometry reconstruction. Int J Adv Manuf Technol 36(11–12):1170–1179

    Article  Google Scholar 

  10. Bremer C (2005) Automated repair and overhaul of aero-engine and industrial gas turbine components. Proc ASME Turbo Expo 2005 Vol 2:841–846

    Article  Google Scholar 

  11. Yilmaz O, Gindy N, Gao J (2010) A repair and overhaul methodology for aeroengine components. Robot Comput Integr Manuf 26(2):190–201

    Article  Google Scholar 

  12. J. B. Jones, P. McNutt, R. Tosi, C. Perry, and D. I. Wimpenny (2012) Remanufacture of turbine blades by laser cladding, machining and in-process scanning in a single machine, 23rd Annu Int Solid Free Fabr Symp Austin, Texas, USA, pp. 821–827

  13. Zhang Y, Yang Z, He G, Qin Y, Zhang HC (2015) Remanufacturing-oriented geometric modelling for the damaged region of components. Procedia CIRP 29:798–803

    Article  Google Scholar 

  14. Gao J, Folkes J, Yilmaz O, Gindy N (2005) Investigation of a 3D non-contact measurement based blade repair integration system. Aircr Eng Aerosp Technol 77(1):34–41(8)

    Article  Google Scholar 

  15. Chen XQ, Wang D, Li HZ (2009) A hybrid method of reconstructing 3D airfoil profile from incomplete and corrupted optical scans. Int J Mechatronics Manuf Syst 2(1–2):39–57

    Google Scholar 

  16. Tao W, Huapeng D, Hao W, Jie T (2015) Virtual remanufacturing: cross-section curve reconstruction for repairing a tip-defective blade. Proc Inst Mech Eng Part C J Mech Eng Sci 0(0):1–12

    Google Scholar 

  17. Wu H, Gao J, Li S, Zhang Y, Zheng D (2013) A review of geometric reconstruction algorithm and repairing methodologies for gas turbine components. Telkomnika 11(3):1609–1618

    Article  Google Scholar 

  18. Wang Y, Feng HY (2014) Modeling outlier formation in scanning reflective surfaces using a laser stripe scanner. Meas J Int Meas Confed 57:108–121

    Article  Google Scholar 

  19. Wang Y, Feng HY (2016) Effects of scanning orientation on outlier formation in 3D laser scanning of reflective surfaces. Opt Lasers Eng 81:35–45

    Article  Google Scholar 

  20. Trucco E, Fisher RB, Fitzgibbon AW, Naidu DK (1998) Calibration, data consistency and model acquisition with laser stripers. Int J Comput Integr Manuf 11(4):293–310

    Article  Google Scholar 

  21. Kerninon J, Mognol P, Hascoet J-Y, Legonidec C (2008) Effect of path strategies on metallic parts manufactured by additive process. Solid Free Fabr Symp:352–361

  22. Boisselier D, Sankaré S, Engel T (2014) Improvement of the laser direct metal deposition process in 5-axis configuration. Phys Procedia 56(C):239–249

  23. Mery D (2006) Automated radioscopic inspection of aluminium die castings. Mater Eval 65(6):643–647

    Google Scholar 

  24. Rauch M, Hascoet JY (2007) Rough pocket milling with trochoidal and plunging strategies. Int J Mach Mach Mater 2(2):161–175

    Google Scholar 

  25. Rauch M, Duc E, Hascoet JY (2009) Improving trochoidal tool paths generation and implementation using process constraints modelling. Int J Mach Tools Manuf 49(5):375–383

    Article  Google Scholar 

  26. Rauch M, Hascoet JY (2012) Selecting a milling strategy with regard to the machine tool capabilities: application to plunge milling. Int J Adv Manuf Technol 59(1–4):47–54

    Article  Google Scholar 

  27. Tabernero I, Calleja A, Lamikiz A, López De Lacalle LN (2013) Optimal parameters for 5-axis Laser cladding. Procedia Eng 63:45–52

    Article  Google Scholar 

  28. Calleja A, Tabernero I, Fernández A, Celaya A, Lamikiz A, López De Lacalle LN (2014) Improvement of strategies and parameters for multi-axis laser cladding operations. Opt Lasers Eng 56:113–120

    Article  Google Scholar 

  29. Fischler M, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  Google Scholar 

  30. Torr PHS, Zisserman A (2000) MLESAC: a new robust estimator with application to estimating image geometry. Comput Vis Image Underst 78(1):138–156

    Article  Google Scholar 

  31. Lebeda K, Matas JJ, Chum O (2012) Fixing the locally optimized RANSAC. Proc Br Mach Vis Conf 2012:95.1–95.11

    Google Scholar 

  32. Hast A, Nysjö J, Marchetti A (2013) Optimal RANSAC—towards a repeatable algorithm for finding the optimal set. J WSCG 21(1):21–30

    Google Scholar 

  33. S. Berra, J. Etcheverry, and N. Bonadeo (2007) Laser displacement sensor characterization for use in optical gauging of threaded pipes

  34. Chum O, Matas J, Kittler J (2003) Locally optimized RANSAC. Proc DAGM 2781:236–243

    Google Scholar 

  35. D. Myatt, P. Torr, J. Bishop, and R. Craddock, Napsac: high noise, high dimensional model parameterisation-It'S in the Bag, Doc.Gold.Ac.Uk, pp. 1–9

  36. Bešić I, Van Gestel N, Kruth JP, Bleys P, Hodolič J (2011) Accuracy improvement of laser line scanning for feature measurements on CMM. Opt Lasers Eng 49(11):1274–1280

    Article  Google Scholar 

  37. Yaniv Z (2010) Random sample consensus ( RANSAC ) algorithm, a generic implementation. Inf Syst:1–14

  38. Lazard S, Peñaranda LM, Petitjean S (2006) Intersecting quadrics: an efficient and exact implementation. Comput Geom Theory Appl vol. 35(1–2 SPEC ISS):74–99

    Article  Google Scholar 

  39. Barber CB, Dobkin DP, Huhdanpaa H (1996) The quickhull algorithm for convex hulls. ACM Trans Math Softw 22(4):469–483

    Article  Google Scholar 

  40. Bloomenthal J (1988) Polygonization of implicit surfaces. Comput. Aided Geom. Des. 5(4):341–355

    Article  Google Scholar 

  41. Bloomenthal J (1994) An implicit surface polygonizer. Graph gems IV 1:324–349

    Article  Google Scholar 

  42. Rodrigues De Araújo B, Armando Pires Jorge J (2005) Adaptive polygonization of implicit surfaces. Comput Graph 29(5):686–700

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Touzé.

Additional information

This article is part of the collection Welding, Additive Manufacturing and Associated NDT

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hascoët, JY., Touzé, S. & Rauch, M. Automated identification of defect geometry for metallic part repair by an additive manufacturing process. Weld World 62, 229–241 (2018). https://doi.org/10.1007/s40194-017-0523-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-017-0523-0

Keywords (IIW Thesaurus)

Navigation