Welding in the World

, Volume 61, Issue 4, pp 745–754 | Cite as

Reducing potential errors in the calculation of cooling rates for typical arc welding processes

  • A. HälsigEmail author
  • S. Pehle
  • M. Kusch
  • P. Mayr
Research Paper


To reach the goal of weight reduction, modern thermo-mechanically processed micro-alloy steels are increasingly used to replace carbon-manganese structural steels. The processing window for welding these newer materials is much smaller, so it is important to accurately determine the rate of heat input, the t8/5-value (cooling rate) and also to ensure that the desired cooling rate is achieved in production. Variations in the welding process, welding parameters welded joint configuration, welding position, and layer structure change the rate of heat input into the component. At the same time, the arcing efficiency is affected by configuration and position. In combination, these parameters can affect the cooling behavior by more than 60%. Various welding processes and parameters are analyzed and the potential errors are discussed. Following this, the impact of these errors is illustrated with reference to practical measurements. The summation of the possible errors shows that it is difficult in practice to achieve the desired mechanical and metallurgical characteristics, as well as theoretically predicting these values, and also calculating or simulating properties such as distortion, microstructure, or residual stresses. The work presented here, together with recommendations for adjustment of published efficiency values as well form factors to calculate the t8/5-value (cooling rate), is expected to make a significant contribution to improve the quality of welded joints.

Keywords (IIW Thesaurus)

Arc welding Cooling rate Efficiency Energy input Measurement instruments 



This work was part of research project IGF Nr. 15.749B/ DVS-Nr. 03.108 of the research coalition “Deutscher Verband für Schweißen und verwandte Verfahren e.V.” (DVS) and was promoted by the program for industrial alliance research (IGF). The financial support by “German Federal Ministry of Research and Technology” via the consortium “AiF” is gratefully acknowledged.


  1. 1.
    DIN EN 1011-1: “Schweißen – Empfehlungen zum Schweißen metallischer Werkstoffe – Teil 1: Allgemeine Anleitungen für das Lichtbogenschweißen”Google Scholar
  2. 2.
    SEW 088, Beiblatt 1:1993-10: “Schweißgeeignete Feinkornbaustähle; Richtlinien für die Verarbeitung, besonders für das Schmelzschweißen”Google Scholar
  3. 3.
    Jaeschke, B.: DVS-Merkblatt 0973 “Übersicht der Prozessregelvarianten des MSG-Schweißens”. In: Schweißen und Schneiden 66, Heft 9, DVS Media, Düsseldorf 2014.Google Scholar
  4. 4.
    DIN EN 1011-2: Schweißen – Empfehlungen zum Schweißen metallischer Werkstoffe – Teil 2: Lichtbogenschweißen von ferritischen StählenGoogle Scholar
  5. 5.
    Hälsig, A. (2014) Energetische Bilanzierung von Lichtbogenschweißverfahren. In: Dissertation, Universitätsverlag Chemnitz, ISBN 978-3-944640-10-5Google Scholar
  6. 6.
    Mishra, S., DebRoy, T. (2005) A heat-transfer and fluid-flow-based model to obtain a specific weld geometry using various combinations of welding variables. J Appl Phys 98:044902 (p. 1–10), ISSN: 1089–7550Google Scholar
  7. 7.
    Fahrenwaldt, H. J.; Schuler, V. (2009) Praxiswissen Schweißtechnik-Werkstoffe, Prozesse, Fertigung. In: GWV Verlage GmbH, 3. edition, WiesbadenGoogle Scholar
  8. 8.
    Cantin GMD, Francis JA (2005) Arc power and efficiency in gas tungsten arc welding of aluminum. Sci Technol Weld Join 10(5):200–210CrossRefGoogle Scholar
  9. 9.
    Lapin I, Kosovich V, Potapov A, Savinov A (2003) Energy characteristics of the alternating current arc with right-angled pulses in welding aluminum alloy. Weld Int 17(3):217–220CrossRefGoogle Scholar
  10. 10.
    Pépe, N.; Yapp, D. (2008) Measurements of process efficiency for a range of MIG/MAG welding process. In: Conference proceedings: 18.-19. Cranfield, UK; ISBN 978–1–903761-07-6Google Scholar
  11. 11.
    Liskevich, O.; Quintion, L.; Scotti, A. (2012) Intrinsic errors on Cryogenic Calorimetry Applied to Arc Welding”. In: IIW-Document, No. XII-2061/212–1218-12/IV-1101-12, Denver, USAGoogle Scholar
  12. 12.
    Egerland S, Pépe N, Colegrove PA, Yapp D, Leonhartsberger A, Scotti A (2011) Measuring the process efficiency of controlled gas metal arc welding processes. Sci Technol Weld Join 16(5):412–417CrossRefGoogle Scholar
  13. 13.
    Joseph A, Harwig D, Farson DF, Richardson R (2003) Measurement and calculation of arc power and heat transfer efficiency in pulsed gas metal arc welding. Sci Technol Weld Join 8(6):400–406CrossRefGoogle Scholar
  14. 14.
    Probst R, Hartung F (1982) Energetische Betrachtungen zum MAG-Schweissen von Dickblechen. Schweißtechnik Berlin 32(8):345–348 ISSN: 0036-7192Google Scholar
  15. 15.
    Tušek J, Markelj F, Barbič J, Jež B (2003) Influence of type of welded joint on welding efficiency. Sci Technol Weld Join 8(3):157–164CrossRefGoogle Scholar
  16. 16.
    Hälsig, A.; Kusch, M.; Mayr, P. (2013) Kalorimetrische Betrachtung des Energieeintrages ins Bauteil. In: DVS Congress, Essen, DVS-Verlag, S. 353–361, DVS-Berichte Band 296, ISBN 978–3–87155-614-2Google Scholar
  17. 17.
    Bernstein, H. (2012) Elektrotechnik/Elektronik für Maschinenbauer – Grundlagen und Anwendungen. In: Vieweg+Teubner Verlag, 2. edition, ISBN 978–3–8348-1606-1Google Scholar
  18. 18.
    Pehle S, Hälsig A, Kusch M, Mayr P (2016) Fehlerpotenziale und Maßnahmen. Der Praktiker, DVS Media GmbH 7:209–295 ISSN 0554-9965Google Scholar
  19. 19.
    Pehle S, Hälsig A, Mayr P (2016) Ermittlung von Fehlerpotenzialen bei der Schweißleistungsberechnung energiedynamischer MSG-Prozesse im unteren Leistungsbereich. DVS-Berichte Band 314:68–71 ISBN 978-3-945023-55-6Google Scholar
  20. 20.
    Hälsig A, Kusch M, Mayr P (2012) New findings on the efficiency of gas shielded arc welding. Welding in the World 56(11–12):98–104. doi: 10.1007/BF03321400 CrossRefGoogle Scholar
  21. 21.
    Hälsig A, Mayr P (2013) Energy balance study of gas-shielded arc welding processes. Welding in the World 57(5):727–734. doi: 10.1007/s40194-013-0073-z CrossRefGoogle Scholar

Copyright information

© International Institute of Welding 2017

Authors and Affiliations

  1. 1.Technische Universität ChemnitzChemnitzGermany

Personalised recommendations