Welding in the World

, Volume 61, Issue 4, pp 733–743 | Cite as

Environmental energy efficiency of single wire and tandem gas metal arc welding

  • Gunther SproesserEmail author
  • Ya-Ju Chang
  • Andreas Pittner
  • Matthias Finkbeiner
  • Michael Rethmeier
Research Paper


This paper investigates gas metal arc welding (GMAW) with respect to energy consumption and its associated environmental impacts. Different material transfer modes and power levels for single wire GMAW (SGMAW) and tandem GMAW (TGMAW) are evaluated by means of the indicator electrical deposition efficiency. Furthermore, the wall-plug efficiency of the equipment is measured in order to describe the total energy consumption from the electricity grid. The results show that the energy efficiency is highly affected by the respective process and can be significantly enhanced by a TGMAW process. The wall-plug efficiency of the equipment shows no significant dependency on the power range or the material transfer mode. Moreover, the method of life cycle assessment (LCA) is adopted in order to investigate the influences of energy efficient welding on the environmental impacts. In the comparative LCA study, the demand of electrical energy is reduced up to 24%. In consequence, the indicator values for global warming potential (100), acidification potential, eutrophication potential, and photochemical ozone creation potential are reduced up to 11%.


(IIW Thesaurus) Tandem welding MAG welding Environment Lifetime Energy input 



The authors acknowledge that the study is funded by the German Research Foundation DFG (SFB 1026/1 2012), Collaborative Research Center CRC1026 (Sonderforschungsbereich SFB1026). Furthermore, the authors gratefully acknowledge the support of Fronius International for some of the presented experiments.


  1. 1.
    Ward H, Burger M, Chang Y-J, Fürstmann P, Neugebauer S, Radebach A, Sproesser G, Pittner A, Rethmeier M, Uhlmann E, Steckel JC (2016) Assessing carbon dioxide emission reduction potentials of improved manufacturing processes using multiregional input output frameworks. Journal of Cleaner ProductionGoogle Scholar
  2. 2.
    IPCC (2014) Summary for policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Kim J, Park K, Hwang Y, Park I (2010) Sustainable manufacturing: a case study of the forklift painting process. Int J Prod Res 48(10):3061–3078CrossRefGoogle Scholar
  4. 4.
    Aso R, Cheung WM (2015) Towards greener horizontal-axis wind turbines: analysis of carbon emissions, energy and costs at the early design stage. J Clean Prod 87:263–274CrossRefGoogle Scholar
  5. 5.
    Sproesser G, Chang Y-J, Pittner A, Finkbeiner M, Rethmeier M (2015) Life cycle assessment of welding technologies for thick metal plate welds. J Clean Prod 108:46–53CrossRefGoogle Scholar
  6. 6.
    Chang Y-J, Sproesser G, Neugebauer S, Wolf K, Scheumann R, Pittner A, Finkbeiner M, Rethmeier M (2015) Environmental and social life cycle assessment of welding technologies. Procedia CIRP 26:293–298CrossRefGoogle Scholar
  7. 7.
    Environmental OECD (2010) Climate change issues in the shipbuilding industry Technical report OECD Council Working Party on Shipbuilding (WP6)Google Scholar
  8. 8.
    Ueyama T, Ohnawa T, Tanaka M, Nakata K (2007) Occurrence of arc interaction in tandem pulsed gas metal arc welding. Sci Technol Weld Join 12(6):523–529CrossRefGoogle Scholar
  9. 9.
    Larkin N, Pan Z, Van Duin S, Callaghan M, Li H, Norrish J (2011) Tandem gas metal arc welding for low distortion butt welds. Adv Mater Res 337:511–516Google Scholar
  10. 10.
    Pan Z, Larkin N, Li H, Shen C, Lang D, van Duin S, Sterjovski Z (2013) Evaluation of tandem gas metal arc welding for low distortion butt-welds in naval shipbuilding. Australasian Welding J 58(2):35–41Google Scholar
  11. 11.
    Thompson AM, Dilthey U, Fersini M, Richardson I, Dos Santos J, Yapp D, Hedegård J (2008) Improving the competitiveness of the european steel fabrication industry using synchronised tandem wire welding technology. Technical Report 978-92-79-08353-2, European commission, Directorate-General for Research, Research Fund for Coal and Steel UnitGoogle Scholar
  12. 12.
    Ueyama T, Ohnawa T, Tanaka M, Nakata K (2006) Effect of welding current on high speed welding bead formation in tandem pulsed GMA welding process. Weld Int 20(4):262–267CrossRefGoogle Scholar
  13. 13.
    Ueyama T, Ohnawa T, Tanaka M, Nakata K (2005) Effects of torch configuration and welding current on weld bead formation in high speed tandem pulsed gas metal arc welding of steel sheets. Sci Technol Weld Join 10(6):750–759CrossRefGoogle Scholar
  14. 14.
    Sproesser G, Pittner A, Rethmeier M (2016) Increasing performance and energy efficiency of gas metal arc welding by a high power tandem process. Procedia CIRP 2016(40):649–654Google Scholar
  15. 15.
    Xiang T, Li H, Wei HL, Gao Y (2016) Effects of filling status of cold wire on the welding process stability in twin-arc integrated cold wire hybrid welding. Int J Adv Manuf Technol 83(9):1583–1593CrossRefGoogle Scholar
  16. 16.
    Hedegård J, Tolf E, Andersson J (2005) Tandem-MIG/MAG welding, experiences from optimisation of the process— optimisation of the process—part 2. Report no: Im-2005-127, Technical report, Corrosion and Metals Research Institute - KIMABGoogle Scholar
  17. 17.
    Trommer G (2002) Welding with two wire electrodes—status and prospects of the optimisation of gas-shielded metal-arc welding. Welding and Cutting, pages 122–125Google Scholar
  18. 18.
    Kah P, Suoranta R, Martikainen J (2013) Advanced gas metal arc welding processes. Int J Adv Manuf Technol 67(1):655–674CrossRefGoogle Scholar
  19. 19.
    DuPont JN, Marder AR (1995) Thermal efficiency of arc welding processes. Weld J 74(12):406–416Google Scholar
  20. 20.
    Pépe N, Egerland S, Colegrove PA, Yapp D, Leonhartsberger A, Scotti A (2011) Measuring the process efficiency of controlled gas metal arc welding processes. Sci Technol Weld Join 16(5):412–417CrossRefGoogle Scholar
  21. 21.
    Bosworth MR (1991) Effective heat input in pulsed current gas metal arc welding with solid wire electrodes. Welding J 70(5):111s–117sGoogle Scholar
  22. 22.
    Joseph A, Harwig D, Farson DF, Richardson R (2003) Measurement and calculation of arc power and heat transfer efficiency in pulsed gas metal arc welding. Sci Technol Weld Join 8(6):400–406CrossRefGoogle Scholar
  23. 23.
    Hälsig A, Kusch M, Mayr P (2012) New findings on the efficiency of gas shielded arc welding. Welding in the World 56(11-12):98–104CrossRefGoogle Scholar
  24. 24.
    Hälsig A, Mayr P (2013) Energy balance study of gas-shielded arc welding processes. Welding in the World 57(5):727–734CrossRefGoogle Scholar
  25. 25.
    Hälsig A (2014) Energy balancing of gas shielded arc welding processes. Dissertation, Technische Universität ChemnitzGoogle Scholar
  26. 26.
    Chandel RS (1990) Electrode melting and plate melting efficiencies of submerged arc welding and gas metal arc welding. Mater Sci Technol 6(8):772–777CrossRefGoogle Scholar
  27. 27.
    Huismann G, Burt A (2014) Index for identifying high and low power input into the workpiece for GMAW IIW Document XII-2178-14Google Scholar
  28. 28.
    Hübner M, Rose S, Springhetti D, Schnick M, Füssel U MSG-Tandemschweißen mit Zusatzdraht zur Minderung des Abbrandes von Legierungselementen und gleichzeitiger erhohung̈ der Abschmelzeffizienz DVS Congress 2012, volume DVS-berichte 286, pages 329–334, Düsseldorf, 2012. DVS-MediaGoogle Scholar
  29. 29.
    Finkbeiner M (2012) From the 40s to the 70s—the future of LCA in the ISO 14000 family. Int J Life Cycle Assess 18(1):1–4CrossRefGoogle Scholar
  30. 30.
    Finkbeiner M, Inaba A, Tan R, Christiansen K, Klüppel H-J (2006) The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess 11(2):80–85CrossRefGoogle Scholar
  31. 31.
    ISO (2006) ISO 14040 - Environmental management—life cycle assessment—principles and framework (ISO 14040:2006)Google Scholar
  32. 32.
    Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ (2002) Handbook on life cycle assessment—operational guide to the ISO standards. Kluwer Academic Publishers, New York, Boston, Dordrecht, London, MoscowGoogle Scholar
  33. 33.
    Winter M, Thiede S, Herrmann C (2015) Influence of the cutting fluid on process energy demand and surface roughness in grinding—a technological, environmental and economic examination. Int J Adv Manuf Technol 77(9):2005–2017CrossRefGoogle Scholar
  34. 34.
    Bourhis F, Kerbrat O, Hascoet J-Y, Mognol P (2013) Sustainable manufacturing: evaluation and modeling of environmental impacts in additive manufacturing. Int J Adv Manuf Technol 69(9):1927–1939CrossRefGoogle Scholar
  35. 35.
    Pusavec F, Krajnik P, Kopac J (2010) Transitioning to sustainable production—part i: application on machining technologies. J Clean Prod 18(2):174–184CrossRefGoogle Scholar
  36. 36.
    Shrivastava A, Krones M, Pfefferkorn F (2015) Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum. CIRP J Manuf Sci Technol 9:159–168CrossRefGoogle Scholar
  37. 37.
    Zukauskaite A, Mickeviciene R, Karnauskaite D, Turkina L Environmental and human health issue of welding in the shipyard Transport Means 17th International Conference 2013, Kaunas, Lithuania, 2013, Kaunas University of TechnologyGoogle Scholar
  38. 38.
    Drakopoulos S, Salonitis K, Tsoukantas G, Chryssolouris G (2009) Environmental impact of ship hull repair. Int J Sustainable Manuf 1(3):361–374CrossRefGoogle Scholar
  39. 39.
    JRC (2010) International reference life cycle data system (ILCD) handbook—analysis of existing environmental impact assessment methodologies for use in life cycle assessment - Background document, Publications Office of the European Union, LuxembourgGoogle Scholar
  40. 40.
    World Steel Association (2011) Life cycle assessment methodology report Technical reportGoogle Scholar
  41. 41.
    PE Interational (2014) Harmonization of LCA methodologies for metals—a whitepaper providing guidance for conducting LCAs for metals and metal products Technical reportGoogle Scholar
  42. 42.
    Rose S, Schnick M, Füssel U (2012) Cause-and-effect chains of fume formation in GMAW and possibilities of fume reduction by using new welding processes IIW Document VIII-2147- 12Google Scholar
  43. 43.
    Rose M, Schnick S, Füssel U Untersuchungen der schweiß rauchemissionen - moglichkeiten̈ der Reduzierung durch den Einsatz moderner lichtbögen DVS Congress 2012, volume DVS Berichte 286, Düsseldorf, 2012. DVS-MediaGoogle Scholar
  44. 44.
    Kusch M, Hönig T (2008) Schweißrauchemissionsmessungen an modernen Schutzgasschweiß verfahren. Schweiß en und Schneiden 60(2008/9):482–486Google Scholar
  45. 45.
    Rosado T, Pires I, Quintino L (2009) Opportunities to reduce fume emissions in gas metal arc welding IIW Document VIII-2094– 09Google Scholar
  46. 46.
    Beyer A, Gohl H, Hentschel K, Spiegel-Ciobanu V (2002) Literaturreport zum Thema Ozon beim Schweiß en und bei verwandten Verfahren. Technical report, Berufsgenossenschaft Metall Nord SüdGoogle Scholar
  47. 47.
    Pires I, Quintino L, Amaral V, Rosado T (2010) Reduction of fume and gas emissions using innovative gas metal arc welding variants. Int J Adv Manuf Technol 50(5):557–567CrossRefGoogle Scholar

Copyright information

© International Institute of Welding 2017

Authors and Affiliations

  1. 1.Institute of Machine Tools and Factory ManagementTechnische Universität BerlinBerlinGermany
  2. 2.Group of Welding Technology, Department of Component SafetyFederal Institute for Materials Research and TestingBerlinGermany
  3. 3.Department of Environmental TechnologyTechnische Universität BerlinBerlinGermany

Personalised recommendations