Skip to main content
Log in

Weldability studies on borated stainless steel using Varestraint and Gleeble tests

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Borated austenitic stainless steels are widely used in nuclear applications due to their higher neutron absorption efficiency. Weldability of these steels is a major concern due to the formation of low-melting eutectics enriched in iron, chromium, molybdenum and boron. Varestraint and Gleeble-based tests have been carried out to evaluate the solidification and liquation cracking behaviour of 304B4 Grade B stainless steel. The solidus and liquidus temperatures have been determined using differential scanning calorimetry and Scheil simulation for solidification of welds. The results indicate that this steel has good solidification cracking resistance due to the backfilling effects of eutectic borides. However, liquation cracking resistance in this steel is moderate due to its wide nil ductility range. This paper discusses the role of boron on hot cracking susceptibility of this borated austenitic stainless steel using both the Varestraint and Gleeble-based hot ductility tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig 12
Fig. 13

Similar content being viewed by others

References

  1. Robino CV, Cieslak MJ (1995) Metall Mater Trans A 26(7):1673–1685

    Article  Google Scholar 

  2. Shinodo T, Miyake H, Matsuzaka T, Matsumoto T, Kanai H (1992) Mater Sci Technol 8:913–921

    Article  Google Scholar 

  3. (2009) Standard specification for borated stainless steel plate, sheet and strip for nuclear applications, ASTM, A887-89

  4. N.V. Kulkarni (2010) In: Proceedings of 20th Annual Conference of Indian Nuclear Society, Chennai, India, pp 61–65

  5. He JY, Soliman SE, Baratta AJ, Balliett TA (2000) Nucl Technol 130:218–225

    Google Scholar 

  6. Moreno DA, Molina B, Ranninger C, Montero F, Izquierdo J (2004) Corrosion 60(6):573–583

    Article  Google Scholar 

  7. Brooks JA, Thompson AW (1991) Int Mater Rev 36(1):16–44

    Article  Google Scholar 

  8. Robinson JL, Scott MH (1980) Phil Trans R Soc A 295(1413):105–117

    Article  Google Scholar 

  9. John C. Lippold and Damian J. Kotecki Welding metallurgy and weldability of stainless steels. ISBN 0-471-47379, pp 19

  10. Takalo T, Suutala N, Moisio T (1979) Metallurgical Trans A 10(8):1173–1181

    Article  Google Scholar 

  11. Suutala N, Takalo T, Moisio T (1980) Metall Trans A 11(5):717–725

    Article  Google Scholar 

  12. Kujanpaa VP, Suutala N, Moisio T (1980) Metall Constr 12(6):282–285

    Google Scholar 

  13. Masumoto, Takami K, Kutsuna M (1972) J Jpn Weld Soc 41:1306–1314

    Article  Google Scholar 

  14. Donati JR, Guttmann D, Zacharie G (1971) Rev Metall 71(10):917–930

    Google Scholar 

  15. Folkhard E (1998) Welding metallurgy of stainless steels. Springer Verlag, New York

    Google Scholar 

  16. Lundin CD, Lee CH, Qiao CYP (1988) Final report of group sponsored study—weldability and hot ductility behaviour of nuclear grade austenitic stainless steels. University of Tennessee, Knoxville

    Google Scholar 

  17. Lundin CD, Lingenfelter A, Grotke G, Lessman G, Mathews S (1982) Welding Research Council Bulletin, 280

  18. Lin W, Lippold JC, Baeslack WA (1994) Weld J 72(4):135s–153s

    Google Scholar 

  19. Lundin CD, Qiao CYP, Lee CH (1990) In: Standardisation of Gleeble Hot Ductility Testing, Part I: Historical Review, Weldability of Materials, ASM International, Materials Park, Ohio, USA, pp 1–8

  20. Lin W, Nelson TW, Lippold JC, Baeslack WA (1993) International trends in welding science and technology. In: David SA and Vitek JM (eds) ASM International, pp 695–702

  21. Shankar V, Gill TPS, Mannan SL and Sundaresan S (2003) Sadhana, 28, parts 3&4: 359–382

  22. Musech H (1985) Nucl Eng Des 85(2):155–161

    Article  Google Scholar 

  23. Blind D, Weber G and Kussmaul K (1999) In: Proceedings of 15th International Conference on Structural Mechanics in Reactor Technology (PCS-2), Tokyo, Japan 205–213

  24. Goldschmidt HJ (1971) J Iron Steel Inst 209(11):910–911

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bhaduri.

Additional information

Doc. IIW-2499, recommended for publication by Commission II “Arc Welding and Filler Metals.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, G., Divya, M., Das, C.R. et al. Weldability studies on borated stainless steel using Varestraint and Gleeble tests. Weld World 59, 119–126 (2015). https://doi.org/10.1007/s40194-014-0185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-014-0185-0

Keywords

Navigation