Skip to main content
Log in

3D temperature measurement of tandem TIG arc plasma

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Measurements of arc plasma are important for determining the associated physical properties. Such measurements usually involve spectroscopic techniques that measure the temperature distribution in free-burning arcs. Most existing studies have reported the temperature of axially symmetric arc plasma using Abel inversion. This method cannot be used for axially asymmetric arc plasma such as tandem tungsten inert gas (TIG) arc plasma. It is a complex phenomenon because the arc plasma generated from each electrode is affected by the plasma of the other due to electromagnetic force. We measured the temperature distribution of tandem TIG arc plasma in 3D with one camera rotation. The measurement method is based on computed tomography consisting of multidirectional detections and image reconstruction. As a result, we could measure the temperature distribution of the coupled arc plasma provided by the two-electrode TIG arc. In addition, we evaluated the influence of detection directions and numbers on the reconstructed emission intensity distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Haddad GN, Farmer AJD (1984) Temperature determinations in a free-burning arc I: experimental techniques and results in argon. J Phys D Appl Phys 17:1189–1196

    Article  CAS  Google Scholar 

  2. Farmer AJD, Haddad GN (1988) Rayleigh scattering measurements in a free-burning argon arc. J Phys D Appl Phys 21:426–431

    Article  CAS  Google Scholar 

  3. Vilarinho LO, Fanara C, Yapp D, Richardson IM (2009) Quasi-neutrality and local thermodynamic equilibrium in atmospheric pressure arc discharges. J Braz Soc Mech Sci 31–3:224–231

    Google Scholar 

  4. Murphy AB (1994) Modified Fowler–Milne method for the spectroscopic measurement of temperature and composition of multielement thermal plasmas. Rev Sci Instrum 65(11):3423–3427

    Article  CAS  Google Scholar 

  5. Natsu W, Ojima S, Kobayashi T, Kunieda M (2004) Temperature distribution measurement in EDM arc plasma using spectroscopy. JSME Int J C-Mech Sy 47(1):384–390

    Article  Google Scholar 

  6. Ma S, Gao H, Wu L (2008) Spatial spectroscopic diagnostics of arc plasmas by monochromatic imaging. IEEE T Plasma Sci 36(4):1054–1055

    Article  Google Scholar 

  7. Hiraoka K, Shiwaku T, Ohji T (1997) Determining temperature distributions of gas tungsten arc (TIG) plasma by spectroscopic methods. Weld Int 11(9):688–696

    Article  Google Scholar 

  8. Sakiyama S, Fukumasa O (1999) Diagnosis of asymmetric thermal plasma jet using computer tomography technique. Jpn J Appl Phys 38:4567–4570

    Article  CAS  Google Scholar 

  9. Okigawa A, Tadokoro M, Itoh A, Nakano N (1997) Three dimensional optical emission tomography of an inductively coupled plasma. Jpn J Appl Phys 36:4605–4616

    Article  CAS  Google Scholar 

  10. Franceries X, Freton P, Gonzalez J-J, Lago F, Masquère M (2005) Tomographic reconstruction of 3D thermal plasma systems: a feasibility study. J Phys D Appl Phys 38:3870–3884

    Article  CAS  Google Scholar 

  11. Gao Y, Yu Q, Jiang W, Wan X (2010) Reconstruction of three-dimensional arc-plasma temperature fields by orthographic and double-wave spectral tomography. Opt Laser Technol 42:61–69

    Article  CAS  Google Scholar 

  12. Zhang G, Xiong J, Gao H, Wu L (2011) Reconstruction of emission coefficients for a non-axisymmetric coupling arc by algebraic reconstruction technique. J Quant Spectrosc Ra 112:92–99

    Article  CAS  Google Scholar 

  13. Ogino Y, Hirata Y, Nomura K (2011) Numerical analysis of the heat source characteristics of a two-electrode TIG arc. J Phys D Appl Phys 44:215202

    Article  Google Scholar 

  14. Sheep LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging MI-1(2):113–122

    Article  Google Scholar 

  15. Lange K, Carson R (1984) EM reconstruction tomography. J Comput Assist Tomogr 8:306–316

    CAS  Google Scholar 

  16. Ogawa K (2000) Iterative image reconstruction in emission computed tomography. Japan J Radiol Technol 56(7):890–894 (in Japanese)

    Google Scholar 

  17. Olsen HN (1963) The electric arc as a light source for quantitative spectroscopy. J Quant Spectrosc Ra 3:305–333

    Article  CAS  Google Scholar 

  18. Dimitrijević MS, Christova M, Sahal-Bréchot S (2007) Stark broadening of visible Ar I spectral lines. Phys Scr 75:809–819

    Article  Google Scholar 

  19. Ogino Y, Hirata Y, Kawata J, Nomura K (2013) Numerical analysis of arc plasma and weld pool formation by a tandem TIG arc. Weld World 57(3):411–423

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazufumi Nomura.

Additional information

Doc. IIW-2380, recommended for publication by study group SG-212 "The Physics of Welding".

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, K., Kishi, T., Shirai, K. et al. 3D temperature measurement of tandem TIG arc plasma. Weld World 57, 649–656 (2013). https://doi.org/10.1007/s40194-013-0062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-013-0062-2

Keywords

Navigation