Skip to main content
Log in

A Comparative Study of Clustering Methods for Nanoindentation Mapping Data

  • Technical Article
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

Nanoindentation testing and instrumented indentation remain regularly utilized techniques for the assessment of multi-scale mechanical characteristics from load–displacement data analysis, which is central to twenty first century material characterization. The advent of high-resolution nanoindentation-based property mapping has, however, presented challenges in data interpretation, especially when applying proper clustering methodologies to quantify and interpret data as well as draw appropriate conclusions. In this research, we utilized the scikit-learn library in Python to assess the performance of various clustering algorithms, with a focus on nanoindentation-based hardness and elastic modulus measurements, and their synergistic effects. Clustering parameters were meticulously optimized, and in conjunction with domain expert recommendations, the total number of clusters was set to three. The evaluation was grounded in established clustering performance metrics such as the Davies–Bouldin Index, Calinski–Harabasz Index, and the Silhouette score, aiming to ascertain the optimal clustering approach. Among the eight evaluated clustering algorithms, K-means, Agglomerative and FCM emerged as the most effective, while the OPTICS algorithm consistently underperformed for the considered datasets. Augmenting this study, we introduce an intuitive interface, negating the necessity for prior coding or machine learning familiarity, and offering effortless model fine-tuning, visualization, and comparison. This innovation empowers material science and engineering experts, technical staff, and instrumentalists and facilitates the selection of ideal models across varied datasets. The insights and tools presented herein not only enrich material science and engineering research but also lay a robust foundation for sophisticated and dependable analyses in subsequent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ankerst M, Breunig MM, Kriegel H-P, Sander J (1999) Optics: ordering points to identify the clustering structure, vol 28. ACM, New York, pp 49–60

    Google Scholar 

  2. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  3. Cali’nski T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat-Theory Methods 3(1):1–27

    Article  Google Scholar 

  4. Chen X et al (2021) Clustering analysis of grid nanoindentation data for cementitious materials. J Mater Sci 56:12238–12255

    Article  CAS  Google Scholar 

  5. Cheng Y-T, Cheng C-M (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R Rep 44(4–5):91–149

    Article  Google Scholar 

  6. Chicco G (2012) Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy 42(1):68–80

    Article  Google Scholar 

  7. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 2:224–227

    Article  Google Scholar 

  8. Deisy C, Subbulakshmi B, Baskar S, Ramaraj N (2007) Efficient dimensionality reduction approaches for feature selection. In: International conference on computational intelligence and multimedia applications (ICCIMA 2007), vol 2, pp 121–127

  9. Ding Q, Das H, Upadhyay P, Sousa BC, Karayagiz K, Powell A, Mishra B (2023) Microstructural, corrosion, and mechanical characterization of friction stir welded al 6022-to-zek100 mg joints. Corros Mater Degrad 4(1):142–157

    Article  CAS  Google Scholar 

  10. Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 1(4):601–609

    Article  Google Scholar 

  11. Dudek A (2020) Silhouette index as clustering evaluation tool. In: Studies in classification, data analysis, and knowledge organization, pp 19–33

  12. Fan X, Yue Y, Sarkar P, Wang YR (2020) On hyperparameter tuning in general clustering problems. In: International conference on machine learning pp. 2996–3007

  13. Gao H, Ji B, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci 100(10):5597–5600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gleason MA, Sousa BC, Tsaknopoulos K, Grubbs JA, Hay J, Nardi A, Cote DL (2022) Application of mass finishing for surface modification of copper cold sprayed material consolidations. Materials 15(6):2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hassani M, Seidl T (2017) Using internal evaluation measures to validate the quality of diverse stream clustering algorithms. Vietnam J Comput Sci 4:171–183

    Article  Google Scholar 

  16. Huang A et al (2008) Similarity measures for text document clustering. In: Proceedings of the sixth New Zealand computer science research student conference (NZCSRSC2008), Christchurch, New Zealand, vol 4, pp 9–56

  17. Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recogn Lett 31(8):651–666

    Article  Google Scholar 

  18. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv (CSUR) 31(3):264–323

    Article  Google Scholar 

  19. Kaur A, Bansal RK (2014) K-means and k-medoids clustering algorithms: analysis and comparison. Int J Comput Sci 1(1):42–45

    Google Scholar 

  20. Kettani O, Ramdani F, Tadili B (2014) An agglomerative clustering method for large data sets. Int J Comput Appl 92(14):1–7

    Google Scholar 

  21. Khan K, Rehman SU, Aziz K, Fong S, Sarasvady S (2014) Dbscan: past, present and future. In: The fifth international conference on the applications of digital information and web technologies (ICADIWT 2014), pp 232–238

  22. Kodinariya TM, Makwana PR et al (2013) Review on determining number of cluster in k-means clustering. Int J 1(6):90–95

    Google Scholar 

  23. Koumoulos E et al (2019) Applying machine learning to nanoindentation data of (nano-) enhanced composites. Fibers 8(1):3

    Article  Google Scholar 

  24. Koumoulos EP et al (2019) Constituents phase reconstruction through applied machine learning in nanoindentation mapping data of mortar surface. J Compos Sci 3(3):63

    Article  CAS  Google Scholar 

  25. Lansdowne ZF, Woodward BS (1996) Applying the Borda ranking method. AFJL 20(2):27–29

    Google Scholar 

  26. Moon TK (1996) The expectation-maximization algorithm. IEEE Signal Process Mag 13(6):47–60

    Article  Google Scholar 

  27. Murtagh F, Contreras P (2017) Algorithms for hierarchical clustering: an overview, II. Wiley Interdiscip Rev: Data Min Knowl Discov 7(6):e1219

    Google Scholar 

  28. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  CAS  Google Scholar 

  29. Oyen ML (2005) Spherical indentation creep following ramp loading. J Mater Res 20(8):2094–2100

    Article  CAS  Google Scholar 

  30. Palacio-Niño J-O, Berzal F (2019) Evaluation metrics for unsupervised learning algorithms. arXiv:1905.05667

  31. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  32. Pharr GM (2015) Recent advances in small-scale mechanical property measurement by nanoindentation. Curr Opin Solid State Mater Sci 19(6):315–316

    Article  Google Scholar 

  33. Price SE et al (2021) Automated and refined application of convolutional neural network modeling to metallic powder particle satellite detection. Integr Mater Manuf Innov 10(4):661–676

    Article  Google Scholar 

  34. Radev DR, Jing H, Styś M, Tam D (2004) Centroid-based summarization of multiple documents. Inf Process Manag 40(6):919–938

    Article  Google Scholar 

  35. Reynolds DA et al (2009) Gaussian mixture models. Encycl Biom 741:659–663

    Google Scholar 

  36. Rossi E, Wheeler JM, Sebastiani M (2023) High-speed nanoindentation mapping: a review of recent advances and applications. Curr Opin Solid State Mater Sci 27:101107

    Article  Google Scholar 

  37. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  Google Scholar 

  38. Saari DG (2023) Selecting a voting method: the case for the Borda count. Const Polit Econ 34(3):357–366

    Article  Google Scholar 

  39. Sasirekha K, Baby P (2013) Agglomerative hierarchical clustering algorithm-a. Int J Sci Res Publ 83(3):83

    Google Scholar 

  40. Sau M, Hintsala ED, Chen Y, Stauffer DD, Maloy SA, Eftink BP, Mara NA (2022) High-throughput nanoindentation mapping of additively manufactured t91 steel. JOM 74(4):1469–1476

    Article  Google Scholar 

  41. Schuliger A et al (2023) Multiple-instance regression for metal powder hall flow rate prediction using augmented particle size and shape data. Powders 2(1):189–204

    Article  Google Scholar 

  42. Sheikholeslami G, Chatterjee S, Zhang A (1998) Wavecluster: a multi-resolution clustering approach for very large spatial databases. Vldb 98:428–439

    Google Scholar 

  43. Shukla S, Naganna S (2014) A review on k-means data clustering approach. Int J Inf Comput Technol 4(17):1847–1860

    Google Scholar 

  44. Sousa B (2022) Multiscale indentation mechanics for advanced and heterogenous metallurgical materials processing-structure-properties-performance relations (Unpublished doctoral dissertation). Worcester Polytechnic Institute Worcester

  45. Sousa BC, Aindow M, Lee S-W, Lados D, Spangenberger AG, Sample CM, Cote DL (2023) Characterization of cold-sprayed material consolidations. Advances in cold spray. Elsevier, Amsterdam, pp 205–298

    Google Scholar 

  46. Sousa BC, Hay J, Cote DL (2023) Toward an instrumented strength microprobe–origins of the Oliver–Pharr method and continued advancements in nanoindentation: part 1. In: Elasticity of materials. IntechOpen

  47. Sousa BC et al (2022) Clustering algorithms for nanomechanical property mapping and resultant microstructural constituent and phase quantification. In: TMS 2022 151st annual meeting & exhibition supplemental proceedings, pp 713–724

  48. Stahl D, Sallis H (2012) Model-based cluster analysis. Wiley Interdiscip Rev: Comput Stat 4(4):341–358

    Article  Google Scholar 

  49. Tsaknopoulos K, Grubbs J, Sousa BC, Siopis M, Nardi A, Cote DL (2022) Evaluation of a laser powder bed fusion designer Al–Mg–Zr–Si alloy for cold spray additive manufacturing. Mater Des 222:111105

    Article  CAS  Google Scholar 

  50. Vaithyanathan S, Dom B (1999) Model selection in unsupervised learning with applications to document clustering. In: ICML, pp 433–443

  51. Vignesh B, Oliver W, Kumar GS, Phani PS (2019) Critical assessment of high speed nanoindentation mapping technique and data deconvolution on thermal barrier coatings. Mater Des 181:108084

    Article  CAS  Google Scholar 

  52. Vlassak JJ, Nix W (1994) Measuring the elastic properties of anisotropic materials by means of indentation experiments. J Mech Phys Solids 42(8):1223–1245

    Article  Google Scholar 

  53. Wijaya YA, Kurniady DA, Setyanto E, Tarihoran WS, Rusmana D, Rahim R (2021) Davies bouldin index algorithm for optimizing clustering case studies mapping school facilities. TEM J 10(3):1099–1103

    Article  Google Scholar 

  54. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  55. Xu R, Wunsch D (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678

    Article  PubMed  Google Scholar 

  56. Yang M, Sousa B, Smith R, Sabarou H, Cote D, Zhong Y, Sisson RD (2021) Bainite percentage determination and effect of bainite percentage on mechanical properties in austempered AISI 5160 steel. Mater Perform Charact 10(1):110–125

    Article  Google Scholar 

  57. Zhang T, Ramakrishnan R, Livny M (1997) Birch: a new data clustering algorithm and its applications. Data Min Knowl Disc 1:141–182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Price.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizade, M., Kheni, R., Price, S. et al. A Comparative Study of Clustering Methods for Nanoindentation Mapping Data. Integr Mater Manuf Innov (2024). https://doi.org/10.1007/s40192-024-00349-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40192-024-00349-3

Keywords

Navigation