Skip to main content
Log in

Numerical and Experimental Characterization of Melt Pool in Laser Powder Bed Fusion of SS316l

  • Technical Article
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

Laser powder bed fusion (LPBF), also called selective laser melting, is an additive manufacturing technology with great potential for creating three-dimensional metallic components with intricate designs. The application of dynamic thermal cycles involving melting and cooling makes it difficult to maintain the desired surface quality and shape in the LPBF process. The LPBF process's dynamic stability of the melt pool is essential to ascertain due to its influence on the quality of the manufactured products. Examining the thermal behavior and temperature distribution inside the melt pool is necessary. Subsequent to experimental validation, employing a finite element model (FEM) has the potential to accurately define thermal distributions and the dimensions of the melt pool. A three-dimensional transient model based on a moving Gaussian heat source was employed in this study to examine the influence of process variables (i.e., scan velocity, laser power, laser beam radius, hatch spacing, number of layers, and scan angle for each layer) on the melt pool shape in LPBF of SS316L powder. A finite element model based on three-dimensional parameters was proposed to evaluate the temperature gradient and melt pool characteristics of SS316L when subjected to laser powder bed fusion. The method takes into account the effect of the laser penetration depth on the characteristics of the molten pool, determined by a multiple-layer (15) and multiple-track (6) finite element model with variable process parameters, such as laser power, scanning speed, beam radius and hatch spacing. Experimental data obtained from the literature were used to calibrate the proposed heat source model, and the adjusted finite element model was then validated through further experiments. The modeling results showed concordance with the experimental data. The effects of the interlayer and intertrack were examined. Temperature distributions for each track and layer and the depth, width and length of the melt pool were evaluated, and the observed values for each variable were analyzed. The average melt pool length, width, and depth were determined to have relative errors of 1.88%, 1.49%, and 2.12%, respectively, between the FEM model and experimentally measured dimensions for an optimal range of varied process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

k :

Thermal conductivity [W/(m·°C)]

Q :

Heat generation per volume (W/m3)

ρ :

Material density (kg/m3)

q :

Conduction heat transfer (W/m2)

\({q}_{\mathrm{c}}\) :

Convection heat transfer (W/m2)

\({q}_{\mathrm{r}}\) :

Radiation heat transfer (W/m2)

c :

Specific heat capacity [J/(kg·°C)]

H :

Convection heat coefficient [W/(m2 °C)]

\(\varepsilon \) :

Emissivity

\(\sigma \) :

Stefan–Boltzmann constant

\({T}_{o}\) :

Ambient temperature (0 \(^\circ{\rm C} \))

\({T}_{\mathrm{room}}\) :

Room temperature (\(^\circ{\rm C} \))

T :

Medium temperature (\(^\circ{\rm C} \))

\({k}_{\mathrm{p}}\) :

Material thermal conductivity in powder state [W/(m·°C)]

\({k}_{\mathrm{s}}\) :

Material thermal conductivity in solid state (W/(m·°C)

\({\rho }_{\mathrm{s}}\) :

Material density in powder state (kg/m3)

\({\rho }_{\mathrm{p}}\) :

Material density in solid state (kg/m3)

φ :

Material porosity

H :

Enthalpy (J/m3)

\(\eta \) :

Laser absorptivity

R :

Laser beam radius (µm)

V :

Laser scan velocity (mm/s)

S :

Laser penetration depth

P :

Laser power (W)

t :

Laser run time (s)

\(n\) :

Number of layers

H :

Layer thickness (µm)

X, Y, Z :

Coordinate system

References

  1. Huang Y, Yang L, Du X, Yang Y (2016) Finite element analysis of thermal behavior of metal powder during selective laser melting. Int J Therm Sci 104:146–157

    Article  CAS  Google Scholar 

  2. Yadroitsev I, Yadroitsava I, Bertrand P, Smurov I (2012) Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks. Rapid Prototyp J 18:201–208

    Article  Google Scholar 

  3. Gupta MK et al (2020) Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour of SLM Al-Si-10Mg alloy. J Market Res 9(5):9506–9522

    CAS  Google Scholar 

  4. Ali H, Ghadbeigi H, Hosseinzadeh F, Oliveira J, Mumtaz K (2019) Effect of pre-emptive in situ parameter modification on residual stress distributions within selective laser-melted Ti6Al4V components. Int J Adv Manuf Technol 103(9):4467–4479

    Article  Google Scholar 

  5. Yap CY et al (2015) Review of selective laser melting: Materials and applications. Appl Phys Rev 2(4):041101

    Article  Google Scholar 

  6. Clare AT, Chalker PR, Davies S, Sutcliffe CJ, Tsopanos S (2008) Selective laser melting of high aspect ratio 3D nickel–titanium structures two way trained for MEMS applications. Int J Mech Mater Des 4(2):181–187

    Article  CAS  Google Scholar 

  7. Wong M, Tsopanos S, Sutcliffe CJ, Owen I (2007) Selective laser melting of heat transfer devices. Rapid Prototyp J 13:291–297

    Article  Google Scholar 

  8. Vandenbroucke B, Kruth JP (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13:196–203

    Article  Google Scholar 

  9. Rochus P, Plesseria J-Y, Van Elsen M, Kruth J-P, Carrus R, Dormal T (2007) New applications of rapid prototyping and rapid manufacturing (RP/RM) technologies for space instrumentation. Acta Astronaut 61(1–6):352–359

    Article  Google Scholar 

  10. Hollander DA et al (2006) Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming. Biomaterials 27:955–963

    Article  CAS  Google Scholar 

  11. Khanna N, Mistry S, Rashid RR, Gupta MK (2019) Investigations on density and surface roughness characteristics during selective laser sintering of Invar-36 alloy. Mater Res Express 6(8):086541

    Article  CAS  Google Scholar 

  12. Xiong Z, Liu S, Li S, Shi Y, Yang Y, Misra R (2019) Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy. Mater Sci Eng A 740:148–156

    Article  Google Scholar 

  13. Hussein A, Hao L, Yan C, Everson R (2013) Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater Des 1980–2015(52):638–647

    Article  Google Scholar 

  14. Denlinger ER, Gouge M, Irwin J, Michaleris P (2017) Thermomechanical model development and in situ experimental validation of the laser powder-bed fusion process. Addit Manuf 16:73–80

    Google Scholar 

  15. Zohdi TI (2017) Modeling and simulation of functionalized materials for additive manufacturing and 3d printing: continuous and discrete media: continuum and discrete element methods. Springer, Berlin

    Google Scholar 

  16. Alghamdi A, Downing D, McMillan M, Brandt M, Qian M, Leary M (2019) Experimental and numerical assessment of surface roughness for Ti6Al4V lattice elements in selective laser melting. Int J Adv Manuf Technol 105(1):1275–1293

    Article  Google Scholar 

  17. Jiang H-Z et al (2019) Factor analysis of selective laser melting process parameters with normalised quantities and Taguchi method. Opt Laser Technol 119:105592

    Article  CAS  Google Scholar 

  18. Liu J et al (2020) Effect of scanning speed on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting. Mater Des 186:108355

    Article  CAS  Google Scholar 

  19. Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I (2010) Single track formation in selective laser melting of metal powders. J Mater Process Technol 210(12):1624–1631

    Article  CAS  Google Scholar 

  20. Kusuma C, Ahmed SH, Mian A, Srinivasan R (2017) Effect of laser power and scan speed on melt pool characteristics of commercially pure titanium (CP-Ti). J Mater Eng Perform 26(7):3560–3568

    Article  CAS  Google Scholar 

  21. Craeghs T, Bechmann F, Berumen S, Kruth J-P (2010) Feedback control of Layerwise laser melting using optical sensors. Phys Procedia 5:505–514

    Article  Google Scholar 

  22. Gusarov A, Yadroitsev I, Bertrand P, Smurov I (2007) Heat transfer modelling and stability analysis of selective laser melting. Appl Surf Sci 254(4):975–979

    Article  CAS  Google Scholar 

  23. Childs T, Hauser C, Badrossamay M (2005) Selective laser sintering (melting) of stainless and tool steel powders: experiments and modelling. Proc Inst Mech Eng Part B J Eng Manuf 219(4):339–357

    Article  CAS  Google Scholar 

  24. Grossmann A, Felger J, Froelich T, Gosmann J, Mittelstedt C (2019) Melt pool controlled laser powder bed fusion for customised low-density lattice structures. Mater Des 181:108054

    Article  Google Scholar 

  25. Yasa E, Deckers J, Kruth JP (2011) The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp J 17:312–327

    Article  Google Scholar 

  26. Shi X, Ma S, Liu C, Wu Q (2017) Parameter optimization for Ti–47Al–2Cr–2Nb in selective laser melting based on geometric characteristics of single scan tracks. Opt Laser Technol 90:71–79

    Article  CAS  Google Scholar 

  27. Zaeh MF, Branner G (2010) Investigations on residual stresses and deformations in selective laser melting. Prod Eng Res Devel 4(1):35–45

    Article  Google Scholar 

  28. Parry L, Ashcroft I, Wildman R (2019) Geometrical effects on residual stress in selective laser melting. Addit Manuf 25:166–175

    Google Scholar 

  29. Carraturo M, Lane B, Yeung H, Kollmannsberger S, Reali A, Auricchio F (2020) Numerical evaluation of advanced laser control strategies influence on residual stresses for laser powder bed fusion systems. Integrat Mater Manuf Innov 9:435–445

    Article  Google Scholar 

  30. Leitz K-H, Singer P, Plankensteiner A, Tabernig B, Kestler H, Sigl L (2017) Multi-physical simulation of selective laser melting. Met Powder Rep 72(5):331–338

    Article  Google Scholar 

  31. Song B, Dong S, Liao H, Coddet C (2012) Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering. Int J Adv Manuf Technol 61(9):967–974

    Article  Google Scholar 

  32. Zhang D, Zhang P, Liu Z, Feng Z, Wang C, Guo Y (2018) Thermofluid field of molten pool and its effects during selective laser melting (SLM) of Inconel 718 alloy. Addit Manuf 21:567–578

    Google Scholar 

  33. Li Z, Xu R, Zhang Z, Kucukkoc I (2018) The influence of scan length on fabricating thin-walled components in selective laser melting. Int J Mach Tools Manuf 126:1–12

    Article  Google Scholar 

  34. Manvatkar V, De A, DebRoy T (2014) Heat transfer and material flow during laser assisted multi-layer additive manufacturing. J Appl Phys 116(12):124905

    Article  Google Scholar 

  35. Carraturo M, Kollmannsberger S, Reali A, Auricchio F, Rank E (2021) An immersed boundary approach for residual stress evaluation in selective laser melting processes. Addit Manuf 46:102077

    Google Scholar 

  36. Matsumoto M, Shiomi M, Osakada K, Abe F (2002) Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int J Mach Tools Manuf 42(1):61–67

    Article  Google Scholar 

  37. Luo Z, Zhao Y (2019) Numerical simulation of part-level temperature fields during selective laser melting of stainless steel 316L. Int J Adv Manuf Technol 104(5):1615–1635

    Article  Google Scholar 

  38. Chen H, Wei Q, Wen S, Li Z, Shi Y (2017) Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method. Int J Mach Tools Manuf 123:146–159

    Article  Google Scholar 

  39. Chen H, Wei Q, Zhang Y, Chen F, Shi Y, Yan W (2019) Powder-spreading mechanisms in powder-bed-based additive manufacturing: Experiments and computational modeling. Acta Mater 179:158–171

    Article  CAS  Google Scholar 

  40. Ma L, Bin H (2007) Temperature and stress analysis and simulation in fractal scanning-based laser sintering. Int J Adv Manuf Technol 34(9):898–903

    Article  Google Scholar 

  41. Chiumenti M et al (2017) Numerical modelling and experimental validation in selective laser melting. Addit Manuf 18:171–185

    Google Scholar 

  42. Nickel A, Barnett D, Prinz F (2001) Thermal stresses and deposition patterns in layered manufacturing. Mater Sci Eng, A 317(1–2):59–64

    Article  Google Scholar 

  43. Artinov A, Bachmann M, Rethmeier M (2018) Equivalent heat source approach in a 3D transient heat transfer simulation of full-penetration high power laser beam welding of thick metal plates. Int J Heat Mass Transf 122:1003–1013

    Article  Google Scholar 

  44. Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45

    Article  CAS  Google Scholar 

  45. Yan W et al (2017) Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater 134:324–333

    Article  CAS  Google Scholar 

  46. Foroozmehr A, Badrossamay M, Foroozmehr E, Golabi SI (2016) Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Mater Design 89:255–263

    Article  CAS  Google Scholar 

  47. Neiva E et al (2020) Numerical modelling of heat transfer and experimental validation in powder-bed fusion with the virtual domain approximation. Finite Elem Anal Des 168:103343

    Article  Google Scholar 

  48. Dai K, Shaw L (2002) Distortion minimization of laser-processed components through control of laser scanning patterns. Rapid Prototyp J 8:270–276

    Article  Google Scholar 

  49. Yang JHN, Brandt M, Sun SJ (2009) Numerical and experimental investigation of the heat-affected zone in a laser-assisted machining of Ti–6Al–4V alloy process. In: Materials science forum, 2009, 618: Trans Tech Publ, pp 143–146

  50. Kollmannsberger S, Carraturo M, Reali A, Auricchio F (2019) Accurate prediction of melt pool shapes in laser powder bed fusion by the non-linear temperature equation including phase changes: model validity: isotropic versus anisotropic conductivity to capture AM Benchmark Test AMB2018-02. Integr Mater Manuf Innov 8:167–177

    Article  Google Scholar 

  51. Yin J, Zhu H, Ke L, Lei W, Dai C, Zuo D (2012) Simulation of temperature distribution in single metallic powder layer for laser micro-sintering. Comput Mater Sci 53(1):333–339

    Article  CAS  Google Scholar 

  52. Ibraheem AK, Derby B, Withers PJ (2002) Thermal and residual stress modelling of the selective laser sintering process. MRS Online Proceedings Library (OPL), 758

  53. Shuai C, Feng P, Gao C, Zhou Y, Peng S (2013) Simulation of dynamic temperature field during selective laser sintering of ceramic powder. Math Comput Model Dyn Syst 19(1):1–11

    Article  Google Scholar 

  54. Zhuang J-R, Lee Y-T, Hsieh W-H, Yang A-S (2018) Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder. Opt Laser Technol 103:59–76

    Article  CAS  Google Scholar 

  55. Verhaeghe F, Craeghs T, Heulens J, Pandelaers L (2009) A pragmatic model for selective laser melting with evaporation. Acta Mater 57(20):6006–6012

    Article  CAS  Google Scholar 

  56. Sowdari D, Majumdar P (2010) Finite element analysis of laser irradiated metal heating and melting processes. Opt Laser Technol 42(6):855–865

    Article  CAS  Google Scholar 

  57. Gong H, Xing X, Gu H (2019) Rheological properties of two stainless steel 316L powders for additive manufacturing. IOP Conf Ser Mater Sci Eng 689(1):012003

    Article  CAS  Google Scholar 

  58. Huang W, Zhang Y (2019) Finite element simulation of thermal behavior in single-track multiple-layers thin wall without-support during selective laser melting. J Manuf Process 42:139–148

    Article  Google Scholar 

  59. Loh L-E et al (2015) Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061. Int J Heat Mass Transf 80:288–300

    Article  CAS  Google Scholar 

  60. Liu S, Zhu J, Zhu H, Yin J, Chen C, Zeng X (2020) Effect of the track length and track number on the evolution of the molten pool characteristics of SLMed Al alloy: numerical and experimental study. Opt Laser Technol 123:105924

    Article  CAS  Google Scholar 

  61. Liu Y, Zhang J, Pang Z (2018) Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel. Opt Laser Technol 98:23–32

    Article  CAS  Google Scholar 

  62. Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing, New York

    Book  Google Scholar 

  63. Wood W, Deem H, Lucks D (1964) Handbook of high temperature materials, 3rd edn. Springer, Berlin

    Google Scholar 

  64. Brooks RF, Egry I, Seetharaman S, Grant D (2001) Reliable data for high-temperature viscosity and surface tension: results from a European project. High Temp High Pressur UK 33(6):631–637

    Article  CAS  Google Scholar 

  65. Chen C et al (2019) The effect of process parameters on the residual stress of selective laser melted Inconel 718 thin-walled part. Rapid Prototyp J 25:1359–1369

    Article  Google Scholar 

  66. Larimian T, Kannan M, Grzesiak D, AlMangour B, Borkar T (2020) Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Mater Sci Eng A 770:138455

    Article  CAS  Google Scholar 

  67. Zhang X, Chen L, Zhou J, Ren N (2020) Simulation and experimental studies on process parameters, microstructure and mechanical properties of selective laser melting of stainless steel 316L. J Braz Soc Mech Sci Eng 42(8):1–14

    Article  Google Scholar 

  68. Bertoli US, Wolfer AJ, Matthews MJ, Delplanque J-PR, Schoenung JM (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113:331–340

    Article  Google Scholar 

  69. Huang Z, et al (2021) A new heat source model for selective laser melting simulations based on energy distribution on the powder layer and the surface of substrate. arXiv:2106.03482

  70. Ahmed N, Barsoum I, Haidemenopoulos G, Al-Rub RA (2022) Process parameter selection and optimization of laser powder bed fusion for 316L stainless steel: a review. J Manuf Process 75:415–434

    Article  Google Scholar 

  71. Khorasani M et al (2021) On the role of process parameters on meltpool temperature and tensile properties of stainless steel 316L produced by powder bed fusion. J Mater Res Technol 12:2438–2452

    Article  CAS  Google Scholar 

  72. Heeling T, Cloots M, Wegener K (2017) Melt pool simulation for the evaluation of process parameters in selective laser melting. Addit Manuf 14:116–125

    CAS  Google Scholar 

  73. Tran H-C, Lo Y-L (2018) Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration. J Mater Process Technol 255:411–425

    Article  Google Scholar 

  74. Gusarov A, Yadroitsev I, Bertrand P, Smurov I (2009) Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J Heat Transf 131:7

    Article  Google Scholar 

  75. Li Y, Zhou K, Tan P, Tor SB, Chua CK, Leong KF (2018) Modeling temperature and residual stress fields in selective laser melting. Int J Mech Sci 136:24–35

    Article  Google Scholar 

  76. Fukuyama H, Higashi H, Yamano H (2019) Thermophysical properties of molten stainless steel containing 5 mass% B4C. Nucl Technol 205(9):1154–1163

    Article  Google Scholar 

  77. Trejos-Taborda J, Reyes-Osorio L, Garza C, del Carmen Zambrano-Robledo P, Lopez-Botello O (2022) Finite element modeling of melt pool dynamics in laser powder bed fusion of 316L stainless steel. Int J Adv Manuf Technol 120(5–6):3947–3961

    Article  Google Scholar 

  78. Lee K-H, Yun GJ (2020) A novel heat source model for analysis of melt Pool evolution in selective laser melting process. Addit Manuf 36:101497

    CAS  Google Scholar 

  79. Hodge N, Ferencz R, Solberg J (2014) Implementation of a thermomechanical model for the simulation of selective laser melting. Comput Mech 54(1):33–51

    Article  Google Scholar 

  80. Trejos-Taborda J, Reyes-Osorio L, Garza C, del Carmen Zambrano-Robledo P, Lopez-Botello O (2022) Finite element modeling of melt pool dynamics in laser powder bed fusion of 316L stainless steel. Int J Adv Manuf Technol 120(5):3947–3961

    Article  Google Scholar 

Download references

Acknowledgements

This study was carried out at the National University of Sciences and Technology. The authors wish to express sincere gratitude to the National University of Sciences and Technology, H-12, Islamabad.

Author information

Authors and Affiliations

Authors

Contributions

All the authors participated actively throughout the research process. Dr SHI Jaffery supervised the research. Mr AK carried out simulations, data analysis and sample printing and experimental evaluations and also compiled the first draft. Mr SD designed the design of experiments and process parameters, and Dr ZA and Mr SZH reviewed the final research paper draft.

Corresponding author

Correspondence to Ahsan Khan.

Ethics declarations

Conflicts of interest

The authors do not have any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Jaffery, S.H.I., Hussain, S.Z. et al. Numerical and Experimental Characterization of Melt Pool in Laser Powder Bed Fusion of SS316l. Integr Mater Manuf Innov 12, 210–230 (2023). https://doi.org/10.1007/s40192-023-00302-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-023-00302-w

Keywords

Navigation