Skip to main content

WATMUS: Wavelet Transformation-Induced Multi-time Scaling for Accelerating Fatigue Simulations at Multiple Spatial Scales

Abstract

This paper establishes the wavelet transformation induced multi-time scaling (WATMUS) method as an enabler for modeling fatigue crack nucleation at microstructural and structural scales of polycrystalline metals. The WATMUS method derives its efficiency from (i) transformation of time-scale integration into cycle-scale integration for marching forward in time, and (ii) adaptive cycle-stepping in the integration process. The integration of the WATMUS method with crystal plasticity finite element models for micromechanical modeling, and the parametrically homogenized constitutive models (PHCM)-based FE solvers for macroscopic modeling provides a unique spatiotemporal multiscale platform for simulating large number of cycles (~ 104–106) to fatigue nucleation. Time-scale acceleration is highly relevant when material microstructure plays a significant role, such as with dwell loading. The model is tested for cyclic and dwell loadings at multiple spatial scales of a Ti alloy Ti7AL, viz. the \(\upmu \mathrm{m}\) scale of the microstructure, the mm–cm scale of laboratory specimen, and structural scale of turbine blades. Numerical results demonstrate the ability of WATMUS-accelerated FE solvers in accurately solving fatigue problems across multiple scales of the material.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Acharya A, Sawant A (2006) On a computational approach for the approximate dynamics of averaged variables in nonlinear ode systems: toward the derivation of constitutive laws of the rate type. J Mech Phys Solids 54:2183–2213

    CAS  Article  Google Scholar 

  2. 2.

    Anahid M, Samal MK, Ghosh S (2011) Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of polycrystalline Titanium alloys. J Mech Phys Solids 59(10):2157–2176

    CAS  Article  Google Scholar 

  3. 3.

    Bache M, Cope M, Davies H, Evans W, Harrison G (1997) Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature. Int J Fatigue 19(93):83–88

    Article  Google Scholar 

  4. 4.

    Bandyopadhyay R, Mello A, Kapoor K, Reinhold M, Broderick TF, Sangid M (2019) On the crack initiation and heterogeneous deformation of Ti–6Al–4V during high cycle fatigue at high R ratios. J Mech Phys Solids 129:61–82

    CAS  Article  Google Scholar 

  5. 5.

    Bathe K (1996) Finite element procedures in engineering analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

  6. 6.

    Bennett V, McDowell D (2003) Polycrystal orientation distribution effects on microslip in high cycle fatigue. Int J Fatigue 25:27–39

    CAS  Article  Google Scholar 

  7. 7.

    Chakraborty P, Joseph DS, Ghosh S (2013) Accelerating cyclic plasticity simulations using an adaptive wavelet transformation based multi-time scaling method. Int J Numer Methods Eng 93:1425–1454

    Article  Google Scholar 

  8. 8.

    CMRL-Github-Repository (2021) MATLAB codes for 1D viscoplastic bar problem: WATMUS and single time-scale codes. https://github.com/cmrl-codes/Watmus-1d

  9. 9.

    Coffin L (1972) Fatigue. Ann Rev Mater Res 2:313–348

    CAS  Google Scholar 

  10. 10.

    Cruzado A, Lucarini S, Llorca J, Segurado J (2018) Crystal plasticity simulation of the effect of grain size on the fatigue behavior of polycrystalline inconel 718. Int J Fatigue 113:236–245

    CAS  Article  Google Scholar 

  11. 11.

    Deka D, Joseph D, Ghosh S, Mills M (2006) Crystal plasticity modeling of deformation and creep in polycrystalline Ti-6242. Met Mater Trans A 37:1371–1388

    Article  Google Scholar 

  12. 12.

    Dunne F, Rugg D, Walker A (2007) A systematic study of hcp crystal orientation and morphology effects in polycrystal deformation and fatigue. Proc R Soc Lond 463(2082):1467–1489

    CAS  Google Scholar 

  13. 13.

    Fleck N, Kang K, Ashby M (1994) The cyclic properties of engineering materials. Acta Metal Mater 42:365–381

    CAS  Article  Google Scholar 

  14. 14.

    Gao Y, Stolken J, Kumar M, Ritchie R (2007) High-cycle fatigue of nickel-base superalloy Rene 104 (ME3): interaction of microstructurally small cracks with grain boundaries of known character. Acta Mater 55(9):3155–3167

    CAS  Article  Google Scholar 

  15. 15.

    Ghosh S, Chakraborty P (2013) Microstructure and load sensitive fatigue crack nucleation in Ti-6242 using accelerated crystal plasticity FEM simulations. Int J Fatigue 48:231–246

    CAS  Article  Google Scholar 

  16. 16.

    Ghosh S, Shahba A, Tu X, Huskins EL, Schuster B (2016) Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part II: image-based model with experimental validation. Int J Plast 87:69–85

    CAS  Article  Google Scholar 

  17. 17.

    Goh C, Neu R, McDowell DL (2003) Crystallographic plasticity in fretting of Ti–6Al–4V. Int J Plast 19:1627–1650

    CAS  Article  Google Scholar 

  18. 18.

    Groeber M, Jackson M (2014) DREAM.3D: a digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3(5):56–72

    Article  Google Scholar 

  19. 19.

    Guan Y, Chen B, Zou J, Britton T, Jiang J, Dunne F (2017) Crystal plasticity modelling and HR-DIC measurement of slip activation and strain localization in single and oligo-crystal Ni alloys under fatigue. Int J Plast 88:70–88

    CAS  Article  Google Scholar 

  20. 20.

    Imam M, Gilmore C (1979) Room temperature creep of Ti–6Al–4V. Metall Trans A 10A:419–425

    CAS  Article  Google Scholar 

  21. 21.

    Joseph D, Chakraborty P, Ghosh S (2010) Wavelet transformation based multi-time scaling for crystal plasticity FE simulations under cyclic loading. Comput Methods Appl Mech Eng 199:2177–2194

    Article  Google Scholar 

  22. 22.

    Kotha S, Ozturk D, Ghosh S (2019a) Parametrically homogenized constitutive models (PHCMs) from micromechanical crystal plasticity Fe simulations. Part I: sensitivity analysis and parameter identification for Titanium alloys. Int J Plast 120:296–319

    CAS  Article  Google Scholar 

  23. 23.

    Kotha S, Ozturk D, Ghosh S (2019b) Parametrically homogenized constitutive models (PHCMs) from micromechanical crystal plasticity Fe simulations. Part II: thermo-elasto-plastic model with experimental validation for Titanium alloys. Int J Plast 120:320–339

    CAS  Article  Google Scholar 

  24. 24.

    Kotha S, Ozturk D, Ghosh S (2020) Uncertainty-quantified parametrically homogenized constitutive models (UQ-PHCMS) for dual-phase alpha/beta Titanium alloys. NPJ Comput Mater 6:1–17

    Article  Google Scholar 

  25. 25.

    McDowell D, Dunne F (2010) Microstructure-sensitive computational modeling of fatigue crack formation. Int J Fatigue 32:1521–1542

    CAS  Article  Google Scholar 

  26. 26.

    Mellbin Y, Hallberg H, Ristinmaa M (2014) Accelerating crystal plasticity simulations using GPU multiprocessors. Int J Numer Methods Eng 100:111–135

    Article  Google Scholar 

  27. 27.

    Mills M, Ghosh S, Rokhlin S, Brandes M, Pilchak A, Williams J (2018) The evaluation of cold dwell fatigue in ti-6242. Technical report DOT/FAA/TC-17/571998, FAA report

  28. 28.

    Oskay C, Fish J (2004) Multiscale modeling of fatigue for ductile materials. Int J Multiscale Comput Eng 2:1–25

    Article  Google Scholar 

  29. 29.

    Ozturk D, Shahba A, Ghosh S (2016) Crystal plasticity Fe study of the effect of thermo-mechanical loading on fatigue crack nucleation in Titanium alloys. Fat Fract Eng Mater Struct 39:52–769

    Article  Google Scholar 

  30. 30.

    Ozturk D, Pilchak A, Ghosh S (2017) Experimentally validated dwell fatigue crack nucleation model for \(\alpha \)-ti alloys. Scr Mater 127:15–18

    CAS  Article  Google Scholar 

  31. 31.

    Ozturk D, Kotha S, Pilchak AL, Ghosh S (2019a) Parametrically homogenized constitutive models (PHCMs) for multi-scale predictions of fatigue crack nucleation in titanium alloys. JOM 71(8):2657–2670

    CAS  Article  Google Scholar 

  32. 32.

    Ozturk D, Kotha S, Pilchak AL, Ghosh S (2019b) Two-way multi-scaling for predicting fatigue crack nucleation in titanium alloys using parametrically homogenized constitutive models. J Mech Phys Solids 128:181–207

    CAS  Article  Google Scholar 

  33. 33.

    Simmetrix-Inc (2016) Simulation modeling suite. http://www.simmetrix.com

  34. 34.

    Sinha S, Ghosh S (2006) Modeling cyclic ratcheting based fatigue life of HSLA steels using crystal plasticity fem simulations and experiments. Int J Fatigue 28:1690–1704

    CAS  Article  Google Scholar 

  35. 35.

    Strang G, Nguyen T (1996) Wavelets and filter banks. Wellesley College, Wellesley

    Google Scholar 

  36. 36.

    Suresh S (1998) Fatigue of materials, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  37. 37.

    Thomsen J (2004) Vibrations and stability: theory, analysis and tools, 2nd edn. Springer, Berlin

    Google Scholar 

  38. 38.

    Turkmen HS, Loge RE, Dawson PR, Miller M (2003) On the mechanical behavior of AA 7075–T6 during cyclic loading. Int J Fatigue 25:267–281

    CAS  Article  Google Scholar 

  39. 39.

    Venkatramani G, Deka D, Ghosh S (2006) Crystal plasticity based FE model for understanding microstructural effects on creep and dwell fatigue in Ti-6242. J Eng Mater Technol 128:356–365

    Article  Google Scholar 

  40. 40.

    Walker JS (1999) A primer on wavelets and their scientific applications. CRC Press, Boca Raton

    Google Scholar 

  41. 41.

    Yaghmaie R, Guo S, Ghosh S (2016) Wavelet transformation induced multi-time scaling (WATMUS) model for coupled transient electro-magnetic and structural dynamics finite element analysis. Comput Methods Appl Mech Eng 303:341–373

    Article  Google Scholar 

  42. 42.

    Yeratapally SR, Hochhalter JD, Ruggles TJ, Sangid MD (2017) Investigation of fatigue crack incubation and growth in cast MAR-M247 subjected to low cycle fatigue at room temperature. J Mech Phys Solids 208(1):79–96

    CAS  Google Scholar 

  43. 43.

    Yu Q, Fish J (2002) Temporal homogenization of viscoelastic and viscoplastic solids subjected to locally periodic loading. Comp Mech 29:199–211

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Office of Naval Research through Grant No. N00014-18-1-2596 (Program Director: Dr. William Mullins) and by the Air Force Office of Scientific Research Structural Mechanics and Prognosis Program through Grant No. FA-RT1645 (Program Director: Dr. J. Tiley). Computing support from Bluecrab and Rockfish clusters at Maryland Advanced Research Computing Center (MARCC) is gratefully acknowledged. This work also used the Extreme Science and Engineering Discovery Environment (XSEDE) bridges-2 cluster at the Pittsburgh Supercomputing Center (PSC) through allocation MSS200010, which is supported by National Science Foundation grant number ACI-1548562.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Somnath Ghosh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Shen, J., Kotha, S. et al. WATMUS: Wavelet Transformation-Induced Multi-time Scaling for Accelerating Fatigue Simulations at Multiple Spatial Scales. Integr Mater Manuf Innov (2021). https://doi.org/10.1007/s40192-021-00232-5

Download citation

Keywords

  • Multi-time scaling
  • Wavelet transformation
  • Parametric homogenization
  • CPFEM
  • Fatigue crack nucleation
  • Cyclic and dwell loading