Skip to main content

Advertisement

Log in

An Active Learning Approach for the Design of Doped LLZO Ceramic Garnets for Battery Applications

  • Technical Article
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

Growing demand in applications like portable electronics and electric vehicles calls for cost-effective, safe, and high-performance energy storage systems. Development of solid-state electrolytes with Li\(^{+}\) ionic conductivities comparable to those of the current liquid chemistries is an important step towards meeting these needs. Unfortunately, one of the most promising solid electrolytes known to date, lithium lanthanum zirconium oxide (LLZO) garnets, exhibits far from ideal ionic conductivity. Thus, significant efforts, often through aliovalent substitution, have been devoted to increasing their ionic conductivity. Given the high-dimensional design space involved and the time required for synthesis, processing, and characterization of new materials, brute force approaches are not ideal to identify optimal compositions. We assess whether machine learning tools can be used to effectively explore the design space of LLZO garnets and potentially reduce the number of experiments involved in their development. We collected, curated, and filtered all the experimental results of Li\(^{+}\) ionic conductivity in LLZOs published in the scientific literature. Exploration of this data provides insights into the mechanisms that govern ionic transport in these oxides. Furthermore, we show that active learning with predictive models based on random forests can effectively be used with current data for the design of experiments. Our results indicate that the current highest Li\(^{+}\) ionic conductivity garnet LLZO could have been discovered with only 30% of the experimental studies conducted to date. All data and models are available online and can be used to drive future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Varzi A, Raccichini R, Passerini S, Scrosati B (2016) Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J Mater Chem A 4(44):17251–17259

    Article  CAS  Google Scholar 

  2. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41(22):223001

    Article  Google Scholar 

  3. Manthiram A, Xingwen Yu, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2(4):1–16

    Article  Google Scholar 

  4. Kumazaki S, Iriyama Y, Kim K-H, Murugan R, Tanabe K, Yamamoto K, Hirayama T, Ogumi Z (2011) High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si. Electrochem Commun 13(5):509–512

    Article  CAS  Google Scholar 

  5. Thompson T, Yu S, Williams L, Schmidt RD, Garcia-Mendez R, Wolfenstine J, Allen JL, Kioupakis E, Siegel DJ, Sakamoto J (2017) Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12. ACS Energy Lett 2(2):462–468

    Article  CAS  Google Scholar 

  6. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type li7la3zr2o12. Angew Chem Int Ed 46(41):7778–7781

    Article  CAS  Google Scholar 

  7. Il’ina EA, Andreev OL, Antonov BD, Batalov NN (2012) Morphology and transport properties of the solid electrolyte Li7La3Zr2O12 prepared by the solid-state and citrate-nitrate methods. J Power Sources 201:169–173

    Article  Google Scholar 

  8. Rangasamy E, Wolfenstine J, Sakamoto J (2012) The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion 206:28–32

    Article  CAS  Google Scholar 

  9. Buannic L, Orayech B, Del Amo J-ML, Carrasco J, Katcho NA, Aguesse F, Manalastas W, Zhang W, Kilner J, Llordes A (2017) Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chem Mater 29(4):1769–1778

    Article  CAS  Google Scholar 

  10. Mori D, Sugimoto K, Matsuda Y, Ohmori K, Katsumata T, Taminato S, Takeda Y, Yamamoto O, Imanishi N (2019) Synthesis, structure and ionic conductivity of garnet like lithium ion conductor Li6.25 + xGa0.25La3-xSrxZr2O12. J Electrochem. Soc. 166(3):A5168–A5173

    Article  CAS  Google Scholar 

  11. Tong X, Thangadurai V, Wachsman ED (2015) Highly conductive li garnets by a multielement doping strategy. Inorg Chem 54(7):3600–3607

    Article  CAS  Google Scholar 

  12. Miara LJ, Richards WD, Wang YE, Ceder G (2015) First-principles studies on cation dopants and electrolyte| cathode interphases for lithium garnets. Chem Mater 27(11):4040–4047

    Article  CAS  Google Scholar 

  13. Li Y, Wang Z, Li C, Cao Y, Guo X (2014) Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. J Power sources 248:642–646

    Article  CAS  Google Scholar 

  14. Meier K, Laino T, Curioni A (2014) Solid-state electrolytes: revealing the mechanisms of li-ion conduction in tetragonal and cubic llzo by first-principles calculations. J Phys Chem C 118(13):6668–6679

    Article  CAS  Google Scholar 

  15. Kihira Y, Ohta S, Imagawa H, Asaoka T (2013) Effect of simultaneous substitution of alkali earth metals and Nb in Li7La3Zr2O12 on lithium-ion conductivity. ECS Electrochem Lett 2(7):A56–A59

    Article  CAS  Google Scholar 

  16. Jalem R, Rushton MJD, Manalastas W Jr, Nakayama M, Kasuga T, Kilner JA, Grimes RW (2015) Effects of gallium doping in garnet-type Li7La3Zr2O12 solid electrolytes. Chem Mater 27(8):2821–2831

    Article  CAS  Google Scholar 

  17. Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, Ceder G (2015) Design principles for solid-state lithium superionic conductors. Nat Mater 14(10):1026–1031

    Article  CAS  Google Scholar 

  18. Zhang Y, Chen F, Li J, Zhang L, Jiajun G, Zhang D, Saito K, Guo Q, Luo P, Dong S (2018) Regulation mechanism of bottleneck size on Li+ migration activation energy in garnet-type Li7La3Zr2O12. Electrochim Acta 261:137–142

    Article  CAS  Google Scholar 

  19. Su J, Huang X, Song Z, Xiu T, Badding ME, Jin J, Wen Z (2019) Overcoming the abnormal grain growth in ga-doped Li7La3Zr2O12 to enhance the electrochemical stability against li metal. Ceram Int 45(12):14991–14996

    Article  CAS  Google Scholar 

  20. Schwanz DK, Villa A, Balasubramanian M, Helfrecht B, Marinero EE (2020) Bi aliovalent substitution in Li7La3Zr2O12 garnets: Structural and ionic conductivity effects. AIP Adv 10(3):035204

    Article  CAS  Google Scholar 

  21. Settles B (2011) Synthesis lectures on artificial intelligence and machine learning: active learning. Morgan & Claypool Publishers, San Rafael

    Google Scholar 

  22. Ling J, Hutchinson M, Antono E, Paradiso S, Meredig B (2017) High-dimensional materials and process optimization using data-driven experimental design with well-calibrated uncertainty estimates. Integr Mater Manuf Innov 6(3):207–217

    Article  Google Scholar 

  23. National Science and Technology Council (US) (2011) Materials genome initiative for global competitiveness. Executive Office of the President, National Science and Technology Council

  24. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA (2013) The materials project: a materials genome approach to accelerating materials innovation. APL Mater 1(1):011002

    Article  Google Scholar 

  25. O’Mara J, Meredig B, Michel K (2016) Materials data infrastructure: a case study of the citrination platform to examine data import, storage, and access. JOM 68(8):2031–2034

    Article  Google Scholar 

  26. Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten J-W, Santos LBS, Bourne PE et al (2016) The fair guiding principles for scientific data management and stewardship. Sci Data 3:160018

    Article  Google Scholar 

  27. Verduzco JC (2019) Database: Doped garnets (llzo - type). Version 12. Citrination: https://citrination.com/datasets/184812/

  28. Gastelum JCV, Strachan A (2019) Citrine tools for materials informatics. Retrieved from: https://nanohub.org/resources/citrinetools. https://doi.org/10.21981/EH1N-T337

  29. Strachan A, Klimeck G, Lundstrom M (2010) Cyber-enabled simulations in nanoscale science and engineering. Comput Sci Eng 12(2):12–17

    Article  Google Scholar 

  30. Wolfenstine J, Allen JL, Read J, Sakamoto J, Gonalez-Doncel G (2010) Hot-pressed Li0.33La0.57Tio3. J Power Sources 195(13):4124–4128

    Article  CAS  Google Scholar 

  31. Wolfenstine J, Rangasamy E, Allen JL, Sakamoto J (2012) High conductivity of dense tetragonal Li7La3Zr2O12. J Power Sources 208:193–196

    Article  CAS  Google Scholar 

  32. Jha A, Chandrasekaran A, Kim C, Ramprasad R (2019) Impact of dataset uncertainties on machine learning model predictions: the example of polymer glass transition temperatures. Model Simul Mater Sci Eng 27(2):024002

    Article  CAS  Google Scholar 

  33. Zeier WG (2014) Structural limitations for optimizing garnet-type solid electrolytes: a perspective. Dalton Trans 43(43):16133–16138

    Article  CAS  Google Scholar 

  34. Thompson T, Sharafi A, Johannes MD, Huq A, Allen JL, Wolfenstine J, Sakamoto J (2015) A tale of two sites: on defining the carrier concentration in garnet-based ionic conductors for advanced li batteries. Adv Energy Mater 5(11):1500096

    Article  Google Scholar 

  35. Pilania G, Wang C, Jiang X, Rajasekaran S, Ramprasad R (2013) Accelerating materials property predictions using machine learning. Sci Rep 3(1):1–6

    Article  Google Scholar 

  36. Meredig B, Agrawal A, Kirklin S, Saal JE, Doak JW, Thompson A, Zhang K, Choudhary A, Wolverton C (2014) Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys Rev B 89(9):094104

    Article  Google Scholar 

  37. Ghiringhelli LM, Vybiral J, Levchenko SV, Draxl C, Scheffler M (2015) Big data of materials science: critical role of the descriptor. Phys Rev Lett 114(10):105503

    Article  Google Scholar 

  38. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3(Mar):1157–1182

    Google Scholar 

  39. Ward L, Agrawal A, Choudhary A, Wolverton C (2016) A general-purpose machine learning framework for predicting properties of inorganic materials. NPJ Comput Mater 2:16028

    Article  Google Scholar 

  40. Cubuk ED, Sendek AD, Reed EJ (2019) Screening billions of candidates for solid lithium-ion conductors: a transfer learning approach for small data. J Chem Phys 150(21):214701

    Article  Google Scholar 

  41. Jha D, Ward L, Paul A, Liao W, Choudhary A, Wolverton C, Agrawal A (2018) Elemnet: Deep learning the chemistry of materials from only elemental composition. Sci Rep 8(1):1–13

    Article  Google Scholar 

  42. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A (2018) Machine learning for molecular and materials science. Nature 559(7715):547–555

    Article  CAS  Google Scholar 

  43. Feng S, Zhou H, Dong H (2019) Using deep neural network with small dataset to predict material defects. Mater Des 162:300–310

    Article  Google Scholar 

  44. Wager S, Hastie T, Efron B (2014) Confidence intervals for random forests: the jackknife and the infinitesimal jackknife. J Mach Learn Res 15(1):1625–1651

    Google Scholar 

  45. Hutchinson M (2016) Citrine informatics: Lolo. Retrieved from: https://github.com/CitrineInformatics/lolo

  46. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980

  47. Caruana R, Lawrence S, Giles CL (2001) Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. In: Advances in neural information processing systems, pp 402–408

  48. Chollet F et al (2015) Keras. Retrieved from: https://keras.io

  49. Yang H, Zhang Z, Zhang J, Zeng XC (2018) Machine learning and artificial neural network prediction of interfacial thermal resistance between graphene and hexagonal boron nitride. Nanoscale 10(40):19092–19099

    Article  CAS  Google Scholar 

  50. Wagner R, Rettenwander D, Redhammer GJ, Tippelt G, Sabathi G, Musso ME, Stanje B, Wilkening M, Suard E, Amthauer G (2016) Synthesis, crystal structure, and stability of cubic Li7-xLa3Zr2-xBixO12. Inorg Chem 55(23):12211–12219

    Article  CAS  Google Scholar 

  51. Xue D, Balachandran PV, Hogden J, Theiler J, Xue D, Lookman T (2016) Accelerated search for materials with targeted properties by adaptive design. Nat Commun 7(1):1–9

    Article  Google Scholar 

  52. Balachandran PV, Xue D, Theiler J, Hogden J, Lookman T (2016) Adaptive strategies for materials design using uncertainties. Sci Rep 6(1):1–9

    Article  Google Scholar 

Download references

Acknowledgements

This effort was supported by the US National Science Foundation, DMREF program, under Contract Number 1922316-DMR. We acknowledge computational resources from nanoHUB and Purdue University through the Network for Computational Nanotechnology. J. C. V. thanks the Mexican Consejo Nacional de Ciencia y Tecnolog-a, CONACYT, for partial financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Strachan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 141 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verduzco, J.C., Marinero, E.E. & Strachan, A. An Active Learning Approach for the Design of Doped LLZO Ceramic Garnets for Battery Applications. Integr Mater Manuf Innov 10, 299–310 (2021). https://doi.org/10.1007/s40192-021-00214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-021-00214-7

Keywords

Navigation