AMB2018-03: Benchmark Physical Property Measurements for Material Extrusion Additive Manufacturing of Polycarbonate

Abstract

Material extrusion (MatEx) is finding increasing applications in additive manufacturing of thermoplastics due to the ease of use and the ability to process disparate polymers. Since part strength is anisotropic and frequently deviates negatively with respect to parts produced by injection molding, an urgent challenge is to predict final properties of parts made through this method. A nascent effort is underway to develop theoretical and computational models of MatEx part properties, but these efforts require comprehensive experimental data for guidance and validation. As part of the AM-Bench framework, we provide here a thorough set of measurements on a model system: polycarbonate printed in a simple rectangular shape. For the precursor material (as-received filament), we perform rheology, gel permeation chromatography, and dynamical mechanical analysis, to ascertain critical material parameters such as molar mass distribution, glass transition, and shear thinning. Following processing, we conduct X-ray computed tomography, scanning electron microscopy, depth sensing indentation, and atomic force microscopy modulus mapping. These measurements provide information related to pores, method of failure, and local modulus variations. Finally, we conduct tensile testing to assess strength and degree of anisotropy of mechanical properties. We find several effects that lead to degradation of tensile properties including the presence of pore networks, poor interfacial bonding, variations in interfacial mechanical behavior between rasters, and variable interaction of the neighboring builds within the melt state. The results provide insight into the processing–structure–property relationships and should serve as benchmarks for the development of mechanical models.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Notes

  1. 1.

    Certain commercial equipment, software and/or materials are identified in this paper in order to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment and/or materials used are necessarily the best available for the purpose.

References

  1. 1.

    Goh GD, Yap YL, Tan HKJ, Sing SL, Goh GL, Yeong WY (2020) Process-structure-properties in polymer additive manufacturing via material extrusion: a review. Crit Rev Solid State Mater Sci 45(2):113–133

    CAS  Article  Google Scholar 

  2. 2.

    Huang Y, Leu MC, Mazumder J, Donmez A (2015) Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J Manuf Sci E T ASME 137(1):10

    Article  Google Scholar 

  3. 3.

    Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21(1):22–37

    Article  Google Scholar 

  4. 4.

    Mackay ME (2018) The importance of rheological behavior in the additive manufacturing technique material extrusion. J Rheol 62(6):1549–1561

    CAS  Article  Google Scholar 

  5. 5.

    Es-Said O, Foyos J, Noorani R, Mendelson M, Marloth R, Pregger B (2000) Effect of layer orientation on mechanical properties of rapid prototyped samples. Mater Manuf Process 15(1):107–122

    CAS  Article  Google Scholar 

  6. 6.

    Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31(1):287–295

    CAS  Article  Google Scholar 

  7. 7.

    Rankouhi B, Javadpour S, Delfanian F, Letcher T (2016) Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation. J Fail Anal Prev 16(3):467–481

    Article  Google Scholar 

  8. 8.

    Letcher T, Rankouhi B, Javadpour S (2015) Presented at the ASME 2015 international mechanical engineering congress and exposition, 2015 (unpublished)

  9. 9.

    Ziemian C, Sharma M, Ziemian S (2012) Mechanical engineering. InTechOpen

  10. 10.

    Riddick JC, Haile MA, Von Wahlde R, Cole DP, Bamiduro O, Johnson TE (2016) Fractographic analysis of tensile failure of acrylonitrile-butadiene-styrene fabricated by fused deposition modeling. Addit Manuf 11:49–59

    CAS  Google Scholar 

  11. 11.

    Seppala JE, Han SH, Hillgartner KE, Davis CS, Migler KB (2017) Weld formation during material extrusion additive manufacturing. Soft Matter 13(38):6761–6769

    CAS  Article  Google Scholar 

  12. 12.

    Coogan TJ, Kazmer DO (2017) Bond and part strength in fused deposition modeling. Rapid Prototyp J 23(2):414–422

    Article  Google Scholar 

  13. 13.

    Gardea F, Cole DP, Glaz B, Riddick JC (2019) Energy dissipation characteristics of additively manufactured CNT/ABS nanocomposites. Rapid Prototyp J 26(3):509–517

  14. 14.

    Mueller J, Courty D, Spielhofer M, Spolenak R, Shea K (2017) Mechanical properties of interfaces in inkjet 3D printed single-and multi-material parts. 3D Print Addit Manuf 4(4):193–199

    Article  Google Scholar 

  15. 15.

    Levenhagen NP, Dadmun MD (2017) Bimodal molecular weight samples improve the isotropy of 3D printed polymeric samples. Polymer 122:232–241

    CAS  Article  Google Scholar 

  16. 16.

    Hart KR, Dunn RM, Sietins JM, Mock CMH, Mackay ME, Wetzel ED (2018) Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing. Polymer 144:192–204

    CAS  Article  Google Scholar 

  17. 17.

    Ravi AK, Deshpande A, Hsu KH (2016) An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. J Manuf Process 24:179–185

    Article  Google Scholar 

  18. 18.

    Sweeney CB, Lackey BA, Pospisil MJ, Achee TC, Hicks VK, Moran AG, Teipel BR, Saed MA, Green MJ (2017) Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating. Sci Adv 3(6):e1700262

    Article  CAS  Google Scholar 

  19. 19.

    Yardimci MA, Hattori T, Guceri SI, Danforth SC (1997). In: Bourell DL, Beaman JJ, Crawford RH, Marcus HL, Barlow JW (eds) Sol freeform fabric. Univ Texas Austin, Austin, pp 689–698

  20. 20.

    D’Amico A, Peterson AM (2018) An adaptable FEA simulation of material extrusion additive manufacturing heat transfer in 3D. Addit Manuf 21:422–430

    Google Scholar 

  21. 21.

    Luo C, Wang X, Migler KB, Seppala JE (2020) Upper bound of feed rates in thermoplastic material extrusion additive manufacturing. Addit Manuf 32:8

    Google Scholar 

  22. 22.

    Xia HX, Lu JC, Tryggvason G (2019) Simulations of fused filament fabrication using a front tracking method. Int J Heat Mass Transf 138:1310–1319

    CAS  Article  Google Scholar 

  23. 23.

    McIlroy C, Olmsted PD (2017) Deformation of an amorphous polymer during the fused-filament-fabrication method for additive manufacturing. J Rheol 61(2):379–397

    CAS  Article  Google Scholar 

  24. 24.

    Bartolai J, Simpson TW, Xie RX (2018) Predicting strength of additively manufactured thermoplastic polymer parts produced using material extrusion. Rapid Prototyp J 24(2):321–332

    Article  Google Scholar 

  25. 25.

    Coogan TJ, Kazmer DO (2019) Modeling of interlayer contact and contact pressure during fused filament fabrication. J Rheol 63(4):655–672

    CAS  Article  Google Scholar 

  26. 26.

    McIlroy C, Olmsted PD (2017) Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing. Polymer 123:376–391

    CAS  Article  Google Scholar 

  27. 27.

    McIlroy C, Graham RS (2018) Modelling flow-enhanced crystallisation during fused filament fabrication of semi-crystalline polymer melts. Addit Manuf 24:323–340

    CAS  Google Scholar 

  28. 28.

    Bain ED, Garboczi EJ, Seppala JE, Parker TC, Migler KB (2019) AMB2018-04: benchmark physical property measurements for powder bed fusion additive manufacturing of polyamide 12. Integr Mater Manuf I 8(3):335–361

    Article  Google Scholar 

  29. 29.

    Levine L, Lane B, Heigel J, Migler K, Stoudt M, Phan T, Ricker R, Strantza M, Hill M, Zhang F, Seppala J, Garboczi E, Bain E, Cole D, Allen A, Fox J, Campbell C (2020) Outcomes and conclusions from the 2018 AM-bench measurements, challenge problems, modeling submissions, and conference. Integr Mater Manuf Innov 9(1):1–15

    Article  Google Scholar 

  30. 30.

    Miller A, Brown C, Warner G (2019) Guidance on the use of existing ASTM polymer testing standards for ABS parts fabricated using FFF. Smart Sustain Manuf Syst 3(1):122–138

    Article  Google Scholar 

  31. 31.

    Daniel IM, Ishai O, Daniel IM, Daniel I (1994) Engineering mechanics of composite materials. Oxford University Press, New York

    Google Scholar 

  32. 32.

    Yang J, Song B, Zhong X, Jin P (2016) Optimal design of blended composite laminate structures using ply drop sequence. Compos Struct 135:30–37

    Article  Google Scholar 

  33. 33.

    Sudhagar PE, Babu AA, Rajamohan V, Jeyaraj P (2017) Structural optimization of rotating tapered laminated thick composite plates with ply drop-offs. Int J Mech Mater Des 13(1):85–124

    Article  CAS  Google Scholar 

  34. 34.

    Henry TC, Riddick JC, Mills BT, Habtour EM (2017) Composite driveshaft prototype design and survivability testing. J Compos Mater 51(16):2377–2386

    CAS  Article  Google Scholar 

  35. 35.

    Henry T, Mills B (2019) Optimized design for projectile impact survivability of a carbon fiber composite drive shaft. Compos Struct 207:438–445

    Article  Google Scholar 

  36. 36.

    Campilho RD, Banea MD, Pinto AM, da Silva LF, De Jesus A (2011) Strength prediction of single-and double-lap joints by standard and extended finite element modelling. Int J Adhes Adhes 31(5):363–372

    CAS  Article  Google Scholar 

  37. 37.

    Ribeiro T, Campilho R, Da Silva L, Goglio L (2016) Damage analysis of composite–aluminium adhesively-bonded single-lap joints. Compos Struct 136:25–33

    Article  Google Scholar 

  38. 38.

    Liu H, Ojha A, Li Z, Engler-Pinto CC Jr, Su X, Sun Q, Kang H, Wen W, Cui H (2019) Fatigue modeling for carbon/epoxy unidirectional composites under various stress ratios considering size effects. Int J Fatigue 120:184–200

    CAS  Article  Google Scholar 

  39. 39.

    Chamis CC, Sinclair JH (1977) Ten-deg off-axis test for shear properties in fiber composites. Exp Mech 17(9):339–346

    Article  Google Scholar 

  40. 40.

    Coogan TJ, Kazmer DO (2019) In-line rheological monitoring of fused deposition modeling. J Rheol 63(1):141–155

    CAS  Article  Google Scholar 

  41. 41.

    Cicala G, Giordano D, Tosto C, Filippone G, Recca A, Blanco I (2018) Polylactide (PLA) filaments a biobased solution for additive manufacturing: correlating rheology and thermomechanical properties with printing quality. Materials 11(7):13

    Article  CAS  Google Scholar 

  42. 42.

    Li H, Zhang S, Yi ZR, Li J, Sun AH, Guo JJ, Xu GJ (2017) Bonding quality and fracture analysis of polyamide 12 parts fabricated by fused deposition modeling. Rapid Prototyp J 23(6):973–982

    Article  Google Scholar 

  43. 43.

    Northcutt LA, Orski SV, Migler KB, Kotula AP (2018) Effect of processing conditions on crystallization kinetics during materials extrusion additive manufacturing. Polymer 154:182–187

    CAS  Article  Google Scholar 

  44. 44.

    Srinivas V, van Hooy-Corstjens CSJ, Harings JAW (2018) Correlating molecular and crystallization dynamics to macroscopic fusion and thermodynamic stability in fused deposition modeling; a model study on polylactides. Polymer 142:348–355

    CAS  Article  Google Scholar 

  45. 45.

    Chen RK, Lo TT, Chen L, Shih AJ (2015) Nano-CT characterization of structural voids and air bubbles in fused deposition modeling for additive manufacturing. In: ASME international manufacturing science and engineering conference, paper no: MSEC2015-9462, V001T02A071. https://doi.org/10.1115/MSEC2015-9462

  46. 46.

    Nouri H, Guessasma S, Belhabib S (2016) Structural imperfections in additive manufacturing perceived from the X-ray micro-tomography perspective. J Mater Process Tech 234:113–124

    CAS  Article  Google Scholar 

  47. 47.

    Xu N, Ye XJ, Wei DX, Zhong J, Chen YY, Xu GH, He DN (2014) 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair. ACS Appl Mater Inter 6(17):14952–14963

    CAS  Article  Google Scholar 

  48. 48.

    Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55(2):203–216

    CAS  Article  Google Scholar 

  49. 49.

    Shor L, Guceri S, Wen XJ, Gandhi M, Sun W (2007) Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28(35):5291–5297

    CAS  Article  Google Scholar 

  50. 50.

    Cole DP, Riddick JC, Jaim HMI, Strawhecker KE, Zander NE (2016) Interfacial mechanical behavior of 3D printed ABS. J Appl Polym Sci 133(30):43671

  51. 51.

    Ziemian S, Okwara M, Ziemian CW (2015) Tensile and fatigue behavior of layered acrylonitrile butadiene styrene. Rapid Prototyp J 21(3):270–278

    Article  Google Scholar 

  52. 52.

    Liu C, He J, Van Ruymbeke E, Keunings R, Bailly C (2006) Evaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight. Polymer 47(13):4461–4479

    CAS  Article  Google Scholar 

  53. 53.

    Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707

    CAS  Article  Google Scholar 

  54. 54.

    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    CAS  Article  Google Scholar 

  55. 55.

    Feng Y, Siegmund T, Habtour E, Riddick J (2015) Impact mechanics of topologically interlocked material assemblies. Int J Impact Eng 75:140–149

    Article  Google Scholar 

  56. 56.

    Dealy JM, Read DJ, Larson RG (2018) Structure and rheology of molten polymers: from structure to flow behavior and back again. Carl Hanser Verlag GmbH Co KG, Munich

    Google Scholar 

  57. 57.

    Lomellini P (1992) Effect of chain length on the network modulus and entanglement. Polymer 33(6):1255–1260

    CAS  Article  Google Scholar 

  58. 58.

    Zoller P (1982) A study of the pressure-volume-temperature relationships of four related amorphous polymers: polycarbonate, polyarylate, phenoxy, and polysulfone. J Polym Sci Polym Phys Edn 20(8):1453–1464

    CAS  Article  Google Scholar 

  59. 59.

    Plummer C, Soles C, Xiao C, Wu J, Kausch H-H, Yee A (1995) Effect of limiting chain mobility on the yielding and crazing behavior of bisphenol—a polycarbonate derivatives. Macromolecules 28(21):7157–7164

    CAS  Article  Google Scholar 

  60. 60.

    Wimberger-Friedl R, Hut M, Schoo H (1996) Chain stiffness of copolycarbonates containing a spiro linkage. Macromolecules 29(16):5453–5458

    CAS  Article  Google Scholar 

  61. 61.

    Lomellini P (1992) Viscosity-temperature relationships of a polycarbonate melt: Williams–Landel–Ferry versus arrhenius behaviour. Die Makromolekulare Chemie 193(1):69–79

    CAS  Article  Google Scholar 

  62. 62.

    Illers K, Breuer H (1961) Ein Torsionspendel zur genauen und schnellen Bestimmung der dynamisch-mechanischen Eigenschaften visko-elastischer Stoffe (Messungen an Polycarbonaten). Kolloid-Zeitschrift 176(2):110–119

    Article  Google Scholar 

  63. 63.

    Hoffman JD (1969) Anelastic and dielectric effects in polymeric solids. McCrum NG, Read BE, Williams G (1967) Wiley, New York, pp 617. J Appl Polym Sci 13(2):397–397

  64. 64.

    Yee A, Smith S (1981) Molecular structure effects on the dynamic mechanical spectra of polycarbonates. Macromolecules 14(1):54–64

    CAS  Article  Google Scholar 

  65. 65.

    Hutchinson J, Smith S, Horne B, Gourlay G (1999) Physical aging of polycarbonate: enthalpy relaxation, creep response, and yielding behavior. Macromolecules 32(15):5046–5061

    CAS  Article  Google Scholar 

  66. 66.

    Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor & Francis, London

    Google Scholar 

  67. 67.

    Garboczi EJ, Bentz DP (2001) The effect of statistical fluctuation, finite size error, and digital resolution on the phase percolation and transport properties of the NIST cement hydration model. Cem Concr Res 31(10):1501–1514

    CAS  Article  Google Scholar 

  68. 68.

    Chen X, Yan J, Karlsson AM (2006) On the determination of residual stress and mechanical properties by indentation. Mater Sci Eng A 416(1–2):139–149

    Article  CAS  Google Scholar 

  69. 69.

    Saha R, Nix WD (2002) Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater 50(1):23–38

    CAS  Article  Google Scholar 

  70. 70.

    Forster AM, Michaels CA, Sung L, Lucas J (2009) Modulus and chemical mapping of multilayer coatings. ACS Appl Mater Interfaces 1(3):597–603

    CAS  Article  Google Scholar 

  71. 71.

    Jakes JE, Frihart CR, Beecher JF, Moon RJ, Stone D (2008) Experimental method to account for structural compliance in nanoindentation measurements. J Mater Res 23(4):1113–1127

    CAS  Article  Google Scholar 

  72. 72.

    Cole DP, Gardea F, Henry TC, Seppala JE, Garboczi EJ, Migler KD, Shumeyko CM, Westrich JR, Orski SV, Gair JL (2018) 2018 AM-bench test descriptions for AMB2018-03. 25 September 2020. https://www.nist.gov/ambench/amb2018-03-description

  73. 73.

    Garzon-Hernandez S, Arias A, Garcia-Gonzalez D (2020) A continuum consitutive model for FDM 3D printed thermoplastics. Comput Part B 201:108373

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge useful discussions with Rachel Andrulonis at the National Institute for Aviation Research (NIAR), Erich Bain at CCDC Army Research Laboratory, and Vicky Nguyen and Sung Hoon Kang at Johns Hopkins University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Cole.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cole, D.P., Gardea, F., Henry, T.C. et al. AMB2018-03: Benchmark Physical Property Measurements for Material Extrusion Additive Manufacturing of Polycarbonate. Integr Mater Manuf Innov (2020). https://doi.org/10.1007/s40192-020-00188-y

Download citation

Keywords

  • Additive manufacturing
  • Thermoplastic material extrusion
  • Fused deposition modeling
  • FDM
  • 3-D printing
  • X-ray computed tomography
  • Rheology
  • Polycarbonate
  • AM-bench