High-Throughput Exploration of the Process Space in 18% Ni (350) Maraging Steels via Spherical Indentation Stress–Strain Protocols and Gaussian Process Models


Several challenges are encountered in the development of maraging steels with desired combinations of mechanical properties. These include the need to explore a large process design space, the time- and effort-consuming standardized testing protocols for property evaluations, and the lack of a formal design of experiments strategy that guides the selection of the process conditions for the next set of experiments based on a thorough analyses of the previously accumulated data. In this work, we explored the effect of the different combinations of the aging temperature and the aging time on the yield strength of 350-grade maraging steels using high-throughput protocols. For this purpose, a total of 21 small volumes of differently aged samples were produced and studied using spherical nanoindentation stress–strain protocols. Furthermore, the results of these tests were modeled using Gaussian process regression (GPR) to establish data-driven linkages between the yield strengths and the aging parameters. The predicted yield strengths were found to be in reasonable agreement with the experimentally measured ones. It is also demonstrated that the GPR model can provide objective guidance in the selection of the next set of experiments.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Viswanathan UK, Dey GK, Asundi MK (1993) Precipitation hardening in 350 grade maraging steel. Metall Trans A 24:2429–2442

    Google Scholar 

  2. 2.

    Floreen S (1968) The physical metallurgy of maraging steels. Metall Rev 13(1):115–128

    CAS  Google Scholar 

  3. 3.

    Weiss BZ (1983) Maraging steels—structure, properties and applications. In: Comins NR, Clark JB (eds) Specialty steels and hard materials. Pergamon, New York, pp 35–54

    Google Scholar 

  4. 4.

    Singh GK, Ghosh MM (2017) Study on precipitation hardening of C 250 grade maraging steel. Trans Indian Inst Met 70(8):2111–2122

    CAS  Google Scholar 

  5. 5.

    Tewari R, Mazumder S, Batra IS, Dey GK, Banerjee S (2000) Precipitation in 18 wt% Ni maraging steel of grade 350. Acta Mater 48:1187–1200

    CAS  Google Scholar 

  6. 6.

    Fielding LCD (2014) Understanding toughness and ductility in novel steels with mixed microstructures. University of Cambridge, Cambridge

    Google Scholar 

  7. 7.

    Rack HJ, Kalish D (1971) The strength and fracture toughness of 18Ni(350) maraging steel. Metall Mater Trans B 2(11):3011–3020

    CAS  Google Scholar 

  8. 8.

    Marcisz J, Adamczyk M, Garbarz B (2017) Optimisation of mechanical properties of 18% Ni 350 grade maraging steel using novel heat treatment. Arch Metall Mater 62(1):73–84

    CAS  Google Scholar 

  9. 9.

    Abramov OV, Il’in AI, Kardonskii VM (1983) Effect of heat treatment on the mechanical properties of maraging steel. Metal Sci Heat Treat 25(4):298–301

    Google Scholar 

  10. 10.

    Kladaric I, Kozak D, Krumes D (2009) The effect of aging parameters on properties of maraging steel. Mater Manuf Process 24(7–8):747–749

    CAS  Google Scholar 

  11. 11.

    Lima Filho VX, Barros IF, Abreu HFGD (2017) Influence of solution annealing on microstructure and mechanical properties of maraging 300 steel. Mater Res 20:10–14

    Google Scholar 

  12. 12.

    Tavares SSM, Pardal JM, Martins TRDB, Schmitt VM, Szlejf JFV (2017) Influence of austenitizing on the mechanical properties of maraging 300 and Sae 4340 steels—comparative study. Mater Res 20:39–46

    Google Scholar 

  13. 13.

    Viswanathan UK, Kishore R, Asundi MK (1996) Effect of thermal cycling on the mechanical properties of 350-grade maraging steel. Metall Mater Trans A 27(3):757–761

    Google Scholar 

  14. 14.

    Ooi SW, Hill P, Rawson M, Bhadeshia HKDH (2013) Effect of retained austenite and high temperature laves phase on the work hardening of an experimental maraging steel. Mater Sci Eng A 564:485–492

    CAS  Google Scholar 

  15. 15.

    Morito S, Igarashi R, Kamiya K, Ohba T, Maki T (2010) Effect of cooling rate on morphology and crystallography of lath martensite in Fe–Ni alloys. Mater Sci Forum 638–642:1459–1463

    Google Scholar 

  16. 16.

    Ali M, Porter D, Kömi J, Eissa M, El Faramawy H, Mattar T (2019) Effect of cooling rate and composition on microstructure and mechanical properties of ultrahigh-strength steels. J Iron Steel Res Int 26(12):1350–1365

    CAS  Google Scholar 

  17. 17.

    Simm TH, Sun L, Galvin DR, Hill P, Rawson M, Birosca S, Gilbert EP, Bhadeshia H, Perkins K (2017) The effect of a two-stage heat-treatment on the microstructural and mechanical properties of a maraging steel. Materials (Basel, Switzerland) 10(12):1346

    Google Scholar 

  18. 18.

    Polanski M, Kwiatkowska M, Kunce I, Bystrzycki J (2013) Combinatorial synthesis of alloy libraries with a progressive composition gradient using laser engineered net shaping (LENS): hydrogen storage alloys. Int J Hydrog Energy 38(12159):12171

    Google Scholar 

  19. 19.

    Baron C, Springer H, Raabe D (2016) Combinatorial screening of the microstructure–property relationships for Fe–B–X stiff, light, strong and ductile steels. Mater Des 112:131–139

    CAS  Google Scholar 

  20. 20.

    Ding S, Liu Y, Li Y, Liu Z, Sohn S, Walker FJ, Schroers J (2014) Combinatorial development of bulk metallic glasses. Nat Mater 13:494–500

    CAS  Google Scholar 

  21. 21.

    Potyrailo R, Rajan K, Stoewe K, Takeuchi I, Chisholm B, Lam H (2011) Combinatorial and high-throughput screening of materials libraries: review of state of the art. ACS Comb Sci 13:579–633

    CAS  Google Scholar 

  22. 22.

    Springer H, Belde M, Raabe D (2013) Bulk combinatorial design of ductile martensitic stainless steels through confined martensite-to-austenite reversion. Mater Sci Eng A 582:235–244

    CAS  Google Scholar 

  23. 23.

    Li Z, Ludwig A, Savan A, Springer H, Raabe D (2018) Combinatorial metallurgical synthesis and processing of high-entropy alloys. J Mater Res 33:3156–3169

    CAS  Google Scholar 

  24. 24.

    Weaver JS, Khosravani A, Castillo A, Kalidindi SR (2016) High throughput exploration of process–property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples. Integr Mater Manuf Innov 5:192–211

    Google Scholar 

  25. 25.

    ASTM A255-10 (2018) Standard test methods for determining hardenability of steel. ASTM International, West Conshohocken, PA. www.astm.org

  26. 26.

    Salzbrenner BC, Rodelas JM, Madison JD, Jared BH, Swiler LP, Shen Y-L, Boyce BL (2017) High-throughput stochastic tensile performance of additively manufactured stainless steel. J Mater Process Technol 241:1–12

    CAS  Google Scholar 

  27. 27.

    Boyce B, Salzbrenner B, Rodelas J, Swiler L, Madison J, Jared B, Shen Y-L (2017) Extreme-value statistics reveal rare failure-critical defects in additive manufacturing. Adv Eng Mater 19:1700102

    Google Scholar 

  28. 28.

    Heckman NM, Ivanoff TA, Roach AM, Jared BH, Tung DJ, Brown-Shaklee HJ, Huber T, Saiz DJ, Koepke JR, Rodelas JM, Madison JD, Salzbrenner BC, Swiler LP, Jones RE, Boyce BL (2019) Automated high-throughput tensile testing reveals stochastic process parameter sensitivity. Mater Sci Eng A 772:138632

    Google Scholar 

  29. 29.

    Springer H, Raabe D (2012) Rapid alloy prototyping: compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn–1.2C–xAl triplex steels. Acta Mater 60(12):4950–4959

    CAS  Google Scholar 

  30. 30.

    Wu CP, Tsay LW, Chen C (2003) Notched tensile testing of T-200 maraging steel and its laser welds in hydrogen. Mater Sci Eng A 346(1):302–309

    Google Scholar 

  31. 31.

    He Y, Yang K, Qu W, Kong F, Su G (2002) Strengthening and toughening of a 2800-MPa grade maraging steel. Mater Lett 56(5):763–769

    CAS  Google Scholar 

  32. 32.

    MacLeod R, Barnett P, Clark J, Cresswell W (2006) Mass-dependent predation risk as a mechanism for house sparrow declines? Biol Lett 2(1):43–46

    Google Scholar 

  33. 33.

    Hutchinson B, Hagström J, Karlsson O, Lindell D, Tornberg M, Lindberg F, Thuvander M (2011) Microstructures and hardness of as-quenched martensites (0.1–0.5%C). Acta Mater 59(14):5845–5858

    CAS  Google Scholar 

  34. 34.

    Balos S, Rajnovic D, Sidjanin L, Eric Cekic O, Moraca S, Trivkovic M, Dedic M (2019) Vickers hardness indentation size effect in selective laser melted MS1 maraging steel. Proc Inst Mech Eng Part C J Mech Eng Sci. https://doi.org/10.1177/0954406219892301

    Article  Google Scholar 

  35. 35.

    Ohmura T, Tsuzaki K, Matsuoka S (2001) Nanohardness measurement of high-purity Fe–C martensite. Scr Mater 45(8):889–894

    CAS  Google Scholar 

  36. 36.

    Sakai PR, Lima MSF, Fanton L, Gomes CV, Lombardo S, Silva DF, Abdalla AJ (2015) Comparison of mechanical and microstructural characteristics in maraging 300 steel welded by three different processes: LASER, PLASMA and TIG. Procedia Eng 114:291–297

    CAS  Google Scholar 

  37. 37.

    Qian F, Sharp J, Rainforth WM (2016) Microstructural evolution of Mn-based maraging steels and their influences on mechanical properties. Mater Sci Eng A 674:286–298

    CAS  Google Scholar 

  38. 38.

    Pathak S, Kalidindi SR, Weaver JS, Wang Y, Doerner RP, Mara NA (2017) Probing nanoscale damage gradients in ion-irradiated metals using spherical nanoindentation. Sci Rep 7:1–12

    Google Scholar 

  39. 39.

    Weaver JS, Priddy MW, McDowell DL, Kalidindi SR (2016) On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction. Acta Mater 117:23–34

    CAS  Google Scholar 

  40. 40.

    Khosravani A, Morsdorf L, Tasan CC, Kalidindi SR (2018) Multiresolution mechanical characterization of hierarchical materials: spherical nanoindentation on martensitic Fe–Ni–C steels. Acta Mater 153:257–269

    CAS  Google Scholar 

  41. 41.

    Weaver JS, Kalidindi SR (2016) Mechanical characterization of Ti–6Al–4 V titanium alloy at multiple length scales using spherical indentation stress–strain measurements. Mater Des 111:463–472

    CAS  Google Scholar 

  42. 42.

    Gong X, Mohan S, Mendoza M, Gray A, Collins P, Kalidindi SR (2017) High throughput assays for additively manufactured Ti–Ni alloys based on compositional gradients and spherical indentation. Integr Mater Manuf Innov 6:218–228

    Google Scholar 

  43. 43.

    Pathak S, Kalidindi SR (2015) Spherical nanoindentation stress–strain curves. Mater Sci Eng R Rep 91:1–36

    Google Scholar 

  44. 44.

    Kalidindi SR, Pathak S (2008) Determination of the effective zero-point and the extraction of spherical nanoindentation stress–strain curves. Acta Mater 56:3523–3532

    CAS  Google Scholar 

  45. 45.

    Guo Z, Sha W (2004) Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network. Comput Mater Sci 29(1):12–28

    CAS  Google Scholar 

  46. 46.

    Fernandez-Zelaia P, Yabansu YC, Kalidindi SR (2019) A comparative study of the efficacy of local/global and parametric/nonparametric machine learning methods for establishing structure–property linkages in high-contrast 3D elastic composites. Integr Mater Manuf Innov 8(2):67–81

    Google Scholar 

  47. 47.

    Tapia G, Elwany AH, Sang H (2016) Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Addit Manuf 12:282–290

    CAS  Google Scholar 

  48. 48.

    Sabin TJ, Bailer-Jones CAL, Withers PJ (2000) Accelerated learning using Gaussian process models to predict static recrystallization in an Al–Mg alloy. Model Simul Mater Sci Eng 8:687–706

    CAS  Google Scholar 

  49. 49.

    Jung J, Yoon JI, Park H, Kim J, Kim H (2019) An efficient machine learning approach to establish structure–property linkages. Comput Mater Sci 156:17–25

    Google Scholar 

  50. 50.

    Yabansu YC, Iskakov A, Kapustina A, Rajagopalan S, Kalidindi SR (2019) Application of Gaussian process regression models for capturing the evolution of microstructure statistics in aging of nickel-based superalloys. Acta Mater 178:45–58

    CAS  Google Scholar 

  51. 51.

    Yabansu YC, Rehn V, Hötzer J, Nestler B, Kalidindi SR (2019) Application of Gaussian process autoregressive models for capturing the time evolution of microstructure statistics from phase-field simulations for sintering of polycrystalline ceramics. Model Simul Mater Sci Eng 27(8):084006

    Google Scholar 

  52. 52.

    ASTM E975–03 (2003) Standard practice for X-ray determination of retained austenite in steel with near random crystallographic orientation. ASTM International, West Conshohocken, PA. www.astm.org

  53. 53.

    Fischer-Cripps AC (1999) The Hertzian contact surface. J Mater Sci 34(1):129–137

    CAS  Google Scholar 

  54. 54.

    Kim HN, Mandal S, Basu B, Kalidindi SR (2019) Probing local mechanical properties in polymer–ceramic hybrid acetabular sockets using spherical indentation stress–strain protocols. Integr Mater Manuf Innov 8(3):257–272

    Google Scholar 

  55. 55.

    Iskakov A, Yabansu YC, Rajagopalan S, Kapustina A, Kalidindi SR (2018) Application of spherical indentation and the materials knowledge system framework to establishing microstructure-yield strength linkages from carbon steel scoops excised from high-temperature exposed components. Acta Mater 144:758–767

    CAS  Google Scholar 

  56. 56.

    Donohue B, Ambrus A, Kalidindi S (2012) Critical evaluation of the indentation data analyses methods for the extraction of isotropic uniaxial mechanical properties using finite element models. Acta Mater 60:3943–3952

    CAS  Google Scholar 

  57. 57.

    Patel DK, Kalidindi SR (2016) Correlation of spherical nanoindentation stress–strain curves to simple compression stress–strain curves for elastic–plastic isotropic materials using finite element models. Acta Mater 112:295–302

    CAS  Google Scholar 

  58. 58.

    Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer, Berlin

    Google Scholar 

  59. 59.

    Williams CK, Rasmussen CE (2006) Gaussian processes for machine learning. MIT Press, Cambridge

    Google Scholar 

  60. 60.

    Chen T, Morris J, Martin E (2007) Gaussian process regression for multivariate spectroscopic calibration. Chemom Intell Labor Syst 87(1):59–71

    CAS  Google Scholar 

  61. 61.

    Yang M, Long S-L, Liang Y-L (2018) Study on the key role of hierarchical microstructure for strength and plasticity in a lath martensitic steel. IOP Conf Ser Mater Sci Eng 324:012043

    Google Scholar 

  62. 62.

    Kitahara H, Ueji R, Tsuji N, Minamino Y (2006) Crystallographic features of lath martensite in low-carbon steel. Acta Mater 54:1279

    CAS  Google Scholar 

  63. 63.

    Morsdorf L, Jeannin O, Barbier D, Mitsuhara M, Raabe D, Tasan CC (2016) Multiple mechanisms of lath martensite plasticity. Acta Mater 121:202–214

    CAS  Google Scholar 

  64. 64.

    Lv Z, Zhang X, Huang X, Hansen N (2017) EBSD characterization of deformed lath martensite in IF steel. IOP Conf Ser Mater Sci Eng 219:012033

    Google Scholar 

  65. 65.

    Kitahara H, Ueji R, Tsuji N, Minamino Y (2006) Crystallographic features of lath martensite in low-carbon steel. Acta Mater 54(5):1279–1288

    CAS  Google Scholar 

  66. 66.

    Niu M, Zhou G, Wang W, Shahzad MB, Shan Y, Yang K (2019) Precipitate evolution and strengthening behavior during aging process in a 2.5 GPa grade maraging steel. Acta Mater 179:296–307

    CAS  Google Scholar 

  67. 67.

    Qian F, Rainforth W (2019) The formation mechanism of reverted austenite in Mn-based maraging steels. J Mater Sci 54:1–8

    Google Scholar 

  68. 68.

    Li X, Yin Z (1995) Reverted austenite during aging in 18Ni(350) maraging steel. Mater Lett 24(4):239–242

    CAS  Google Scholar 

  69. 69.

    Li K, Wei L, An B, Yu B, Misra RDK (2019) Aging phenomenon in low lattice-misfit cobalt-free maraging steel: microstructural evolution and strengthening behavior. Mater Sci Eng A 739:445–454

    CAS  Google Scholar 

  70. 70.

    Viswanathan UK, Dey GK, Sethumadhavan V (2005) Effects of austenite reversion during overageing on the mechanical properties of 18 Ni (350) maraging steel. Mater Sci Eng A 398(1):367–372

    Google Scholar 

  71. 71.

    Reis AGD, Reis DAP, Abdalla AJ, Otubo J (2015) High-temperature creep resistance and effects on the austenite reversion and precipitation of 18 Ni (300) maraging steel. Mater Charact 107:350–357

    CAS  Google Scholar 

  72. 72.

    Moshka O, Pinkas M, Brosh E, Ezersky V, Meshi L (2015) Addressing the issue of precipitates in maraging steels—unambiguous answer. Mater Sci Eng A 638:232–239

    CAS  Google Scholar 

  73. 73.

    Farooque M, Ayub H, Ul Haq A, Khan AQ (1998) The formation of reverted austenite in 18% Ni 350 grade maraging steel. J Mater Sci 33(11):2927–2930

    CAS  Google Scholar 

  74. 74.

    Li K, Wei L, Yu B, Misra RDK (2019) Reverted austenite with distinct characteristics in a new cobalt-free low lattice misfit precipitate-bearing 19Ni3Mo1.5Ti maraging steel. Mater Lett 257:126692

    CAS  Google Scholar 

  75. 75.

    Simm T, Sun L, McAdam S, Hill P, Rawson M, Perkins K (2017) The influence of lath, block and prior austenite grain (PAG) size on the tensile, creep and fatigue properties of novel maraging steel. Materials (Basel, Switzerland) 10(7):730

    Google Scholar 

  76. 76.

    Turner DM, Niezgoda SR, Kalidindi SR (2016) Efficient computation of the angularly resolved chord length distributions and lineal path functions in large microstructure datasets. Model Simul Mater Sci Eng 24(7):075002

    Google Scholar 

  77. 77.

    Raheem Z (2019) Modern physical metallurgy and materials engineering (PDFDrive.com)

  78. 78.

    Hall AM, Slunder CJ (1968) The metallurgy, behavior, and application of the 18-percent nickel maraging steels. NASA SP-5051

  79. 79.

    Marcisz J, Adamczyk M, Garbarz B (2017) Optimisation of mechanical properties of 18% Ni 350 grade maraging steel using novel heat treatment. Arch Metall Mater 62:73–84

    CAS  Google Scholar 

  80. 80.

    Davis JR (1995) ASM specialty handbook: carbon and alloy steels. ASM International, Materials Park

    Google Scholar 

  81. 81.

    Sacks J, Schiller SB, Welch WJ (1989) Designs for computer experiments. Technometrics 31(1):41–47

    Google Scholar 

  82. 82.

    Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4:409–423

    Google Scholar 

  83. 83.

    Kleijnen JP, Beers WV (2004) Application-driven sequential designs for simulation experiments: Kriging metamodelling. J Oper Res Soc 55(8):876–883

    Google Scholar 

Download references


The authors gratefully acknowledge support from N00014-18-1-2879. We also would like to thank the IEN/IMAT Materials Characterization Facility at Georgia Institute of Technology.

Author information



Corresponding author

Correspondence to Surya R. Kalidindi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parvinian, S., Yabansu, Y.C., Khosravani, A. et al. High-Throughput Exploration of the Process Space in 18% Ni (350) Maraging Steels via Spherical Indentation Stress–Strain Protocols and Gaussian Process Models. Integr Mater Manuf Innov (2020). https://doi.org/10.1007/s40192-020-00177-1

Download citation


  • Martensite
  • Maraging steels
  • Spherical nanoindentation
  • High throughput
  • Yield strength
  • Gaussian process regression
  • Uncertainty quantification
  • Process–property linkages