Integrative Materials Design of Three-Phase Mo-Si-B Alloys

  • K. A. BrindleyEmail author
  • M. W. Priddy
  • R. W. Neu
Technical Article


Mo-Si-B alloys can offer higher temperature capability than Ni-base superalloys with proper balancing of the creep, ductility, and oxidation resistance through microstructure optimization. Mo-Si-B alloys are heterogeneous, containing both brittle and ductile phases and interfaces. Therefore, the phase fractions, their distributions, and their constitutive properties over the range of room temperature to maximum use temperature must be considered. This work addresses the optimization of mechanical properties for three-phase Mo-Si-B alloys. Three modeling tools are employed: microstructure generators to re-create statistically realistic microstructures, crystal viscoplasticity constitutive equations implemented for use with finite element solvers to capture microplasticity, and reduced-order models for evaluating important mechanical properties. In particular, the effects of microstructure on elastic modulus, yield strength, fatigue resistance, and susceptibility to brittle microcracking are considered. A novel reduced-order model is introduced for the evaluation of susceptibility to microcracking at phase interfaces. It is found that the Si content of the α-Mo phase is much more significant to the alloy’s balance of mechanical properties than the α-Mo volume fraction.


Mo-Si-B alloys Molybdenum-silicide alloys ICME Structure-property relationships 



Special thanks to the points of contact during the course of this work, Dr. Gopal Das, Rick Montero, and Dr. Shiela Woodard.

Funding Information

This work was supported by United Technologies Corporation, Pratt & Whitney Division.


  1. 1.
    Bewlay BP, Jackson MR, Zhao JC, Subramanian PR (2003) A review of very-high-temperature Nb-silicide-based composites. Metall Mater Trans A 34A:2043–2052CrossRefGoogle Scholar
  2. 2.
    Dimiduk DM, Perepezko JH (2003) Mo-Si-B alloys: developing a revolutionary turbine-engine material. Mater Res Soc Bull 28:639–645CrossRefGoogle Scholar
  3. 3.
    Lemberg JA, Ritchie RO (2012) Mo-Si-B alloys for ultrahigh-temperature structural applications. Adv Mater 24:3445–3480CrossRefGoogle Scholar
  4. 4.
    Mitra R (2006) Mechanical behaviour and oxidation resistance of structural silicides. Int Mater Rev 51(1):13–64CrossRefGoogle Scholar
  5. 5.
    Aryal S, Gao MC, Ouyang L, Rulis P, Ching WY (2013) Ab initio studies of Mo-based alloys: mechanical, elastic, and vibrational properties. Intermetallics 38:116–125CrossRefGoogle Scholar
  6. 6.
    Perepezko JH (2009) The hotter the engine, the better. Science 326:1068–1069CrossRefGoogle Scholar
  7. 7.
    Schneibel JH, Kramer MJ, Ünal O, Wright RN (2001) Processing and mechanical properties of a molybdenum silicide with the composition Mo-12Si-8.5B (at. %). Intermetallics 9:25–31CrossRefGoogle Scholar
  8. 8.
    Parthasarathy TA, Mendiratta MG, Dimiduk DM (2002) Oxidation mechanisms in Mo-reinforced Mo5SiB2 (T2) - Mo3Si alloys. Acta Mater 50:1857–1868CrossRefGoogle Scholar
  9. 9.
    Alur AP, Chollacoop N, Kumar KS (2004) High-temperature compression behavior of Mo-Si-B alloys. Acta Mater 52:5571–5587CrossRefGoogle Scholar
  10. 10.
    Alur AP, Sakidja R, Wang P, Jain P, Perepezko JH, Kumar KS (2011) Deformation behavior of a quaternary Mo-Nb-Si-B alloy. In: Materials research society symposium proceedings, vol 1295. Materials Research Society, pp 355–360Google Scholar
  11. 11.
    Choe H, Chen D, Schneibel JH, Ritchie RO (2001) Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo-12Si-8.5B (at. %) intermetallic. Intermetallics 9:319–329CrossRefGoogle Scholar
  12. 12.
    Choe H, Schneibel JH, Ritchie RO (2003) On the fracture and fatigue properties of Mo-Mo3Si-Mo5SiB2 refractory intermetallic alloys at ambient to elevated temperatures (25 °C to 1300 °C). Metall Mater Trans A 34A(2):225CrossRefGoogle Scholar
  13. 13.
    Jain P, Alur AP, Kumar KS (2006) High temperature compressive flow behavior of a Mo-Si-B solid solution alloy. Scr Mater 54: 13–17CrossRefGoogle Scholar
  14. 14.
    Jéhanno P, Heilmaier M, Saage H, Böning M, Kestler H, Freudenberger J, Drawin S (2007) Assessment of the high temperature deformation behavior of molybdenum silicide alloys. Mater Sci Eng A 463:216–223CrossRefGoogle Scholar
  15. 15.
    Jain P, Kumar KS (2010) Tensile creep of Mo-Si-B alloys. Acta Mater 58:2124–2142CrossRefGoogle Scholar
  16. 16.
    Jéhanno P, Heilmaier M, Saage H, Heyse H, Böning M, Kestler H, Schneibel JH (2006) Superplasticity of a multiphase refractory Mo-Si-B alloy. Scr Mater 55:525–528CrossRefGoogle Scholar
  17. 17.
    Kumar KS, Alur AP (2007) Deformation behavior of a two-phase Mo-Si-B alloy. Intermetallics 15:687–693CrossRefGoogle Scholar
  18. 18.
    Lemberg JA, Middlemas MR, Weingärtner T, Gludovatz B, Cochran JK, Ritchie RO (2012) On the fracture toughness of fine-grained Mo-3Si-1B (wt. %) alloys at ambient to elevated (1300 °C) temperatures. Intermetallics 20:141–154CrossRefGoogle Scholar
  19. 19.
    Liu CT, Schneibel JH, Heatherly L (1999) Processing, microstructure, and properties of multiphase Mo silicide alloys. In: Materials research society symposium proceedings, vol 552. Materials Research SocietyGoogle Scholar
  20. 20.
    Nieh TG, Wang JG, Liu CT (2001) Deformation of a multiphase Mo-9.4Si-13.8B alloy at elevated temperatures. Intermetallics 9:73–79CrossRefGoogle Scholar
  21. 21.
    Schneibel JH, Kramer MJ, Easton DS (2002) A Mo-Si-B intermetallic alloy with a continuous α-Mo matrix. Scr Mater 46:217–221CrossRefGoogle Scholar
  22. 22.
    Kruzic JJ, Schneibel JH, Ritchie RO (2005) Ambient- to elevated-temperature fracture and fatigue properties of Mo-Si-B alloys: role of microstructure. Metall Mater Trans A 36A:2393–2402CrossRefGoogle Scholar
  23. 23.
    Middlemas MR (2009) Fabrication, strength and oxidation of molybdenum-silicon-boron alloys from reaction synthesis. PhD Dissertation, Georgia Institute of Technology, Atlanta, GeorgiaGoogle Scholar
  24. 24.
    Middlemas MR, Cochran JK (2008) Dense, fine-grain Mo-Si-B alloys from nitride-based reactions. JOM, 19–24Google Scholar
  25. 25.
    Sturm D, Heilmaier M, Schneibel JH, Jéhanno P, Skrotzki B, Saage H (2007) The influence of silicon on the strength and fracture toughness of molybdenum. Mater Sci Eng A 463:107–114CrossRefGoogle Scholar
  26. 26.
    Bruckart WL, LaChance MH, Craighead CM, Jaffee RI (1953) Properties of some hydrogen-sintered binary molybdenum alloys. Trans Amer Soc Metals 45:286Google Scholar
  27. 27.
    Northcott L (1956) Molybdenum. Academic Press Inc., New YorkGoogle Scholar
  28. 28.
    Saage H, Krüger M, Sturm D, Heilmaier M, Schneibel JH, George E, Heatherly L, Somsen C, Eggeler G, Yang Y (2009) Ductilization of Mo-Si solid solutions manufactured by powder metallurgy. Acta Mater 57:3895–3901CrossRefGoogle Scholar
  29. 29.
    Swadener JG, Rosales I, Schneibel JH (2001) Elastic and plastic properties of Mo3Si measured by nanoindentation. In: Materials research society symposium proceedings, vol 646. Materials Research SocietyGoogle Scholar
  30. 30.
    Rosales I, Schneibel JH, Heatherly L, Horton JA, Martinez L, Campillo B (2003) High temperature deformation of A15 Mo3Si single crystals. Scr Mater 48:185–190CrossRefGoogle Scholar
  31. 31.
    Rioult FA, Imhoff SD, Sakidja R, Perepezko JH (2009) Transient oxidation of Mo-Si-B alloys: effect of the microstructure size scale. Acta Mater 57:4600–4613CrossRefGoogle Scholar
  32. 32.
    Ito K, Ihara K, Tanaka K, Fujikura M, Yamaguchi M (2001) Physical and mechanical properties of single crystals of the T2 phase in the Mo-Si-B system. Intermetallics 9:591–602CrossRefGoogle Scholar
  33. 33.
    Marshall PE (2015) Development of oxidation resistant molybdenum-silicon-boron composites. PhD Dissertation, Georgia Institute of Technology, Atlanta, GeorgiaGoogle Scholar
  34. 34.
    Daloz WL (2015) Developing a high temperature, oxidation resistant molybdenum-silica composite. PhD Dissertation, Georgia Institute of Technology, Atlanta, GeorgiaGoogle Scholar
  35. 35.
    Kruzic JJ, Schneibel JH, Ritchie RO (2005) Role of microstructure in promoting fracture and fatigue resistance in Mo-Si-B alloys. In: Materials research society symposium proceedings, vol 842Google Scholar
  36. 36.
    Patra A, Priddy MW, McDowell DL (2015) Modeling the effects of microstructure on the tensile properties and micro-fracture behavior of Mo-Si-B alloys at elevated temperatures. Intermetallics 64:6–17CrossRefGoogle Scholar
  37. 37.
    Przybyla CP (2010) Microstructure-sensitive extreme value probabilities of fatigue in advance engineering alloys. PhD Dissertation, Georgia Institute of Technology, Atlanta, GeorgiaGoogle Scholar
  38. 38.
    Groeber M, Ghosh S, Uchic MD, Dimiduk DM (2008) A framework for automated analysis and simulation of 3d polycrystalline microstructures. Part 2: synthetic structure generation. Acta Mater 56:1274–1287CrossRefGoogle Scholar
  39. 39.
    Groeber MA, Jackson MA (2014) DREAM.3D: a digital representation environment for the analysis of microstructure in 3d. Integrat Mater Manuf Innov 3:5CrossRefGoogle Scholar
  40. 40.
    Brindley KA (2017) Microstructure-sensitive structure-property modeling tools for triplex Mo-Si-B alloys. PhD Dissertation, Georgia Institute of Technology, Atlanta, GeorgiaGoogle Scholar
  41. 41.
    Bachmann F, Hielscher R, Schaeben H (2010) Texture analysis with MTEX - free and open source software toolbox. Solid State Phenom 160:63–68CrossRefGoogle Scholar
  42. 42.
    Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11 (5):357–372CrossRefGoogle Scholar
  43. 43.
    McDowell DL, Dunne FPE (2010) Microstructure-sensitive computational modeling of fatigue crack formation. Int J Plast 32:1521–1542Google Scholar
  44. 44.
    Peirce D, Asaro RJ, Needleman A (1983) Material rate dependence and localized deformation in crystalline solids. Acta Metall 31(12):1951–1976CrossRefGoogle Scholar
  45. 45.
    No AMC, Ortiz M (1992) Computational modelling of single crystals. Model Simul Mater Sci Eng 1:225–263Google Scholar
  46. 46.
    Zhang M, Zhang J, McDowell DL (2007) Microstructure-based crystal plasticity modeling of cyclic deformation of Ti-6Al-4V. Int J Plast 23(8):1328–1348CrossRefGoogle Scholar
  47. 47.
    Priddy MW, Paulson NH, Kalidindi SR, McDowell DL (2017) Strategies for rapid parametric assessment of microstructure-sensitive fatigue for hcp polycrystals. Int J Fatigue, 231–242Google Scholar
  48. 48.
    Armstrong PJ, Frederick CO (1966) A mathematical representation of the multiaxial bauschinger effect, Tech. Rep. GEGB Report, RD/B/N731 Berkeley Nuclear LaboratoriesGoogle Scholar
  49. 49.
    Wronski AS, Johnson AA (1962) The deformation and fracture properties of polycrystalline molybdenum. Philos Mag 7(74):213–227CrossRefGoogle Scholar
  50. 50.
    Orava RN (1964) . Trans Metallur Soc AIME 230:1614Google Scholar
  51. 51.
    Lim H, Battaile CC, Carroll JD, Boyce BL, Weinberger CR (2015) A physically based model of temperature and strain rate dependent yield in BCC metals: implementation into crystal plasticity. J Mech Phys Solids 74:80–96CrossRefGoogle Scholar
  52. 52.
    Yalcinkaya T, Brekelmans WAM, Geers MGD (2008) BCC single crystal plascticity modeling and its experimental identification. Model Simul Mater Sci Eng 16:1–16CrossRefGoogle Scholar
  53. 53.
    Dassault Systemes: Abaqus v. 6.11-1. 2011. Providence, RI, USAGoogle Scholar
  54. 54.
    Brindley KA, Neu RW (2015) Progress in structure-property modeling tools for γ-TiAl. In: Symposium on high performance aerospace alloys design using ICME approach, (Orlando, FL, USA), the minerals, metals, and materials society. Wiley, pp 1173–1183Google Scholar
  55. 55.
    Dickinson JM, Armstrong PE (1967) Temperature dependence of the elastic constants of molybdenum. J Appl Phys 38:602–606CrossRefGoogle Scholar
  56. 56.
    Biragoni PG, Heilmaier M (2007) FEM-simulation of real and artificial microstructures of Mo-Si-B alloys for elastic properties and comparison with analytical methods. Adv Eng Mater 9(10):882–887CrossRefGoogle Scholar
  57. 57.
    Suresh S (1998) Fatigue of materials, 2 edn. Cambridge University PressGoogle Scholar
  58. 58.
    Manonukul A, Dunne FPE (2004) High- and low-cycle fatigue crack initiation using polycrystal plasticity. R Soc 460:1881–1903CrossRefGoogle Scholar
  59. 59.
    Dunne FPE, Wilkinson AJ, Allen R (2007) Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal. Int J Plast 23:273–295CrossRefGoogle Scholar
  60. 60.
    Socie D (1993) Critical plane approaches for multiaxial fatigue damage assessment. In: McDowell DL, Ellis R (eds) Advances in multiaxial fatigue, ASTM STP 1191. American Society for Testing and Materials, pp 7–36Google Scholar
  61. 61.
    Paulson NH, Priddy MW, McDowell DL, Kalidindi SR (2018) Data-driven reduced-order models for rank-ordering the high cycle fatigue performance of polycrystalline microstructures. Mater Des 154:170–183CrossRefGoogle Scholar
  62. 62.
    Camanho PP, Dávila CG (2002) Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. Tech. Rep. TM-2002-211737 NASAGoogle Scholar
  63. 63.
    Alur AP, Kumar KS (2006) Monotonic and cyclic crack growth response of a Mo-Si-B alloy. Acta Materiala 54:385–400CrossRefGoogle Scholar
  64. 64.
    Kumar S, Alur AP (2007) Crack growth behavior in a two-phase Mo-Si-B alloy, vol 980 of materials research society symposia proceedings. Materials Research Society Cambridge University PressGoogle Scholar
  65. 65.
    Yu JL, Li ZK, Zheng X, Zhang JJ, Liu H, Bai R, Wang H (2012) Tensile properties of multiphase Mo-Si-B refractory alloys at elevated temperatures. Mater Sci Eng A 532:392–395CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Mechanical EngineeringMississippi State UniversityMississippi StateUSA
  3. 3.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations