On the Origin of the Anisotropic Damage of X100 Line Pipe Steel: Part I—In Situ Synchrotron Tomography Experiments

  • Y. MadiEmail author
  • J.-M. Garcia
  • H. Proudhon
  • Y. Shinohara
  • L. Helfen
  • J. Besson
  • T. F. Morgeneyer
Thematic Section: 3D Materials Science
Part of the following topical collections:
  1. 3D Materials Science 2019


In this study, anisotropic ductility and associated damage mechanisms of a grade X100 line pipe steel previously studied at the macroscopic scale were investigated using in situ synchrotron radiation computed tomography of notched round bars. Line pipe materials have anisotropic mechanical properties, such as tensile strength, ductility and toughness. Specimens were tested for loading along both rolling (L) and transverse (T) directions. The in situ data collected allowed quantifying both specimen deformation (evolution of the cross section) and microscopic damage parameters such as porosity, void shape and void orientation. Nucleation at small particles (\({\hbox {CaS/TiO}}_2\)) aligned along the L direction was observed during plastic deformation. It was shown that only very few anisotropic particle clusters are present in the material. However, these clusters led to substantial early void growth for loading normal to the rolling direction, thereby explaining the toughness anisotropy in this material. Significant void growth was observed at the beginning of load decrease for a relatively limited diameter reduction (about 10%). Coalescence of voids within clusters along L direction (Necklace) clearly explained anisotropic rupture.


Anisotropy Rupture Plasticity X100 Line pipe steel Synchrotron tomography In situ mechanical testing 



The authors gratefully acknowledge Nippon Steel Corporation for supporting, M. Dimichiel for help in the use of the beamline at the ESRF (experiment ma1932) and Mateis team from INSA-Lyon University for the use of in situ test machine.

Compliance with Ethical Standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Morgeneyer TF, Besson J, Proudhon H, Starink M, Sinclair I (2009) Experimental and numerical analysis of toughness anisotropy in AA2139 Al-alloy sheet. Acta Mater 57:3902–3915CrossRefGoogle Scholar
  2. 2.
    Chen J, Madi Y, Morgeneyer T, Besson J (2011) Plastic flow and ductile rupture of a 2198 Al–Cu–Li aluminum alloy. Comput Mater Sci 50:1365–1371CrossRefGoogle Scholar
  3. 3.
    Kondori B, Madi Y, Besson J, Benzerga A (2018) Evolution of the 3D plastic anisotropy of HCP metals: experiments and modeling. Int J Plast 117:71–92CrossRefGoogle Scholar
  4. 4.
    Herrington JS, Madi Y, Besson J, Benzerga AA (2019) Modeling the 3D plastic anisotropy of a magnesium alloy processed using severe plastic deformation. In: Joshi VV, Jordon JB, Orlov D, Neelameggham NR (eds) Magnesium technology 2019. Springer, Cham, pp 283–287CrossRefGoogle Scholar
  5. 5.
    Benzerga AA (2000) Rupture ductile des tôles anisotropes. Simulation de la propagation longitudinale dans un tube pressurisé. PhD thesis, Ecole des Mines de Paris, Thèse de doctorat dirigée par Pineau, André Physique. Science des matériaux. Rhéologie Paris, ENMP 200Google Scholar
  6. 6.
    Shinohara Y, Madi Y, Besson J (2016) Anisotropic ductile failure of a high-strength line pipe steel. Int J Fract 197:127–145CrossRefGoogle Scholar
  7. 7.
    Bron F, Besson J (2004) A yield function for anisotropic materials. Application to aluminium alloys. Int J Plast 20:937–963CrossRefGoogle Scholar
  8. 8.
    Benzerga A, Besson J, Pineau A (2004) Anisotropic ductile fracture part I: experiments. Acta Mater 52:4623–4638CrossRefGoogle Scholar
  9. 9.
    Pardoen T (1998) Ductile fracture of cold-drawn copper bars: experimental investigation and micromechanical modelling. PhD thesis, Université catholique de Louvain, BelgiumGoogle Scholar
  10. 10.
    Maire E, Zhou S, Adrien J, Dimichiel M (2011) Damage quantification in aluminium alloys using in situ tensile tests in X-ray tomography. Eng Fract Mech 78:2679–2690CrossRefGoogle Scholar
  11. 11.
    Landron C, Maire E, Bouaziz O, Adrien J, Lecarme L, Bareggi A (2011) Validation of void growth models using X-ray microtomography characterization of damage in dual phase steels. Acta Mater 59:7564–7573CrossRefGoogle Scholar
  12. 12.
    Pommier H, Busso E, Morgeneyer T, Pineau A (2016) Intergranular damage during stress relaxation in AISI 316L-type austenitic stainless steels: effect of carbon, nitrogen and phosphorus contents. Acta Mater 103:893–908CrossRefGoogle Scholar
  13. 13.
    Hannard F, Simar A, Maire E, Pardoen T (2018) Quantitative assessment of the impact of second phase particle arrangement on damage and fracture anisotropy. Acta Mater 148:456–466CrossRefGoogle Scholar
  14. 14.
    Buljac A, Shakoor M, Neggers J, Bernacki M, Bouchard PO, Helfen L, Morgeneyer TF, Hild F (2017) Numerical validation framework for micromechanical simulations based on synchrotron 3D imaging. Comput Mech 59:419–441CrossRefGoogle Scholar
  15. 15.
    Tanguy B, Luu T, Perrin G, Pineau A, Besson J (2008) Plastic and damage behavior of a high strength X100 pipeline steel: experiments and modelling. Int J Press Vessels Pip 85:322–335CrossRefGoogle Scholar
  16. 16.
    Tsuru E, Nagata Y, Shinohara Y, Agata J, Shirakami S (2013) Forming and buckling simulation on high-strength UOE pipe with plastic anisotropy. Technical report, Nippon Steel Technical Report No. 102 January 2013Google Scholar
  17. 17.
    Shinohara Y (2014) Prestrain effect on anisotropic ductile damage. PhD thesis, Mines ParisTechGoogle Scholar
  18. 18.
    Di Michiel M, Merino JM, Fernandez-Carreiras D, Buslaps T, Honkimäki V, Falus P, Martins T, Svensson O (2005) Fast microtomography using high energy synchrotron radiation. Rev Sci Instrum 76:043702CrossRefGoogle Scholar
  19. 19.
    Madi Y, Garcia JM, Proudhon H, Lukas H, Shinohara Y, Besson J, Morgeneyer T (2019) A dataset for in-situ synchrotron tomography experiments to investigate anisotropic damage of line pipe steel. Dataset Zenodo. CrossRefGoogle Scholar
  20. 20.
    Buffière J-Y, Maire E, Adrien J, Masse J-P, Boller E (2010) In situ experiments with X-ray tomography: an attractive tool for experimental mechanics. Exp Mech 50:289–305CrossRefGoogle Scholar
  21. 21.
    Jones E, Oliphant T, Peterson P et al (2001) SciPy: open source scientific tools for Python (online)Google Scholar
  22. 22.
    Landron C, Maire E, Adrien J, Bouaziz O, Di Michiel M, Cloetens P, Suhonen H (2012) Resolution effect on the study of ductile damage using synchrotron X-ray tomography. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 284:15–18CrossRefGoogle Scholar
  23. 23.
    Walton WH (1948) Feret’s statistical diameter as a measure of particle size. Nature 162:329–330CrossRefGoogle Scholar
  24. 24.
    Merkus HG (2009) Particle size measurements: fundamentals, practice, quality (Particle technology series book 17). Springer, BerlinGoogle Scholar
  25. 25.
    Denis EP, Barat C, Jeulin D, Ducottet C (2008) 3D complex shape characterization by statistical analysis: application to aluminium alloys. Mater Charact 59:338–343CrossRefGoogle Scholar
  26. 26.
    Borbély A, Csikor F, Zabler S, Cloetens P, Biermann H (2004) Three-dimensional characterization of the microstructure of a metal–matrix composite by holotomography. Mater Sci Eng A 367:40–50CrossRefGoogle Scholar
  27. 27.
    Morgeneyer TF, Taillandier-Thomas T, Buljac A, Helfen L, Hild F (2016) On strain and damage interactions during tearing: 3D in situ measurements and simulations for a ductile alloy. J Phys Mech Solids 96:550–571CrossRefGoogle Scholar
  28. 28.
    Roth CC, Morgeneyer TF, Cheng Y, Helfen L, Mohr D (2018) Ductile damage mechanism under shear-dominated loading: in-situ tomography experiments on dual phase steel and localization analysis. Int J Plast 109:169–192CrossRefGoogle Scholar
  29. 29.
    Maire E, Bouaziz O, Di Michiel M, Verdu C (2008) Initiation and growth of damage in a dual-phase steel observed by X-ray microtomography. Acta Mater 56:4954–4964CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.MINES ParisTechPSL Research University, Centre des Matériaux, CNRS UMR 7633EvryFrance
  2. 2.EPF - École d’ingénieur-e-sSceauxFrance
  3. 3.Nippon Steel CorporationTokyoJapan
  4. 4.ESRFGrenobleFrance
  5. 5.Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations