Skip to main content
Log in

Modeling Strain Localization in Microtextured Regions in a Titanium Alloy: Ti–6Al–4V

  • Technical Article
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

Large and highly textured regions, referred to as macrozones or microtextured regions, with sizes up to several orders of magnitude larger than those of the individual grains, are found in dual-phase titanium alloys as a consequence of the manufacturing process route. These macrozones have been shown to play a critical role in the failure of titanium alloys, specifically being linked to crack initiation and propagation during cyclic loading. Modeling microstructures containing macrozones using continuum-level formulations to describe the elastic–plastic deformation at the grain scale, i.e., crystal plasticity, poses computational challenges due to the large size of the macrozones, which in turn prevents the use of modeling approaches to understand their deformation behavior. In this work, a crystal plasticity-based modeling approach is implemented to model macrozones in Ti–6Al–4V. Further, to overcome the large computational expense associated with modeling microstructures containing macrozones, a modeling strategy is introduced based on a crystal plasticity description for the macrozone with a reduced-order model for the surrounding aggregate combining anisotropic elasticity and J2 plasticity, based on crystal plasticity-based training data. This modeling approach provides a grain-level description of deformation within macrozones using elastic–plastic continuum simulations, which has often been overlooked. Finally, the reduced-order model is used to investigate the strain localization within the microstructure and the effect of varying the misorientation tolerance on the localization of plastic strain within the macrozones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Le Biavant K, Pommier S, Prioul C (2002) Local texture and fatigue crack initiation in a Ti–6Al–4V titanium alloy. Fatigue Fract Eng Mater Struct 25:527–545. https://doi.org/10.1046/j.1460-2695.2002.00480.x

    Article  Google Scholar 

  2. Gey N, Bocher P, Uta E, Germain L, Humbert M (2012) Texture and microtexture variations in a near-α titanium forged disk of bimodal microstructure. Acta Mater 60:2647–2655. https://doi.org/10.1016/j.actamat.2012.01.031

    Article  CAS  Google Scholar 

  3. Uta E, Gey N, Bocher P, Humbert M, Gilgert J (2009) Texture heterogeneities in αp/αs titanium forging analysed by EBSD-Relation to fatigue crack propagation. J Microsc 233:451–459. https://doi.org/10.1111/j.1365-2818.2009.03141.x

    Article  CAS  Google Scholar 

  4. Bridier F, Villechaise P, Mendez J (2008) Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales. Acta Mater 56:3951–3962. https://doi.org/10.1016/j.actamat.2008.04.036

    Article  CAS  Google Scholar 

  5. Bantounas I, Dye D, Lindley TC (2010) The role of microtexture on the faceted fracture morphology in Ti–6Al–4V subjected to high-cycle fatigue. Acta Mater 58:3908–3918. https://doi.org/10.1016/j.actamat.2010.03.036

    Article  CAS  Google Scholar 

  6. Humbert M, Germain L, Gey N, Bocher P, Jahazi M (2006) Study of the variant selection in sharp textured regions of bimodal IMI 834 billet. Mater Sci Eng A 430:157–164. https://doi.org/10.1016/j.msea.2006.05.047

    Article  CAS  Google Scholar 

  7. Semiatin SL, Kinsel KT, Pilchak AL, Sargent GA (2013) Effect of process variables on transformation-texture development in Ti–6Al–4V sheet following beta heat treatment. Metall Mater Trans A 44:3852–3865. https://doi.org/10.1007/s11661-013-1735-6

    Article  CAS  Google Scholar 

  8. Echlin MP, Stinville JC, Miller VM, Lenthe WC, Pollock TM (2016) Incipient slip and long range plastic strain localization in microtextured Ti–6Al–4V titanium. Acta Mater 114:164–175. https://doi.org/10.1016/j.actamat.2016.04.057

    Article  CAS  Google Scholar 

  9. Bandyopadhyay R, Mello AW, Kapoor K, Reinhold MP, Broderick TF, Sangid MD (2019) On the crack initiation and heterogeneous deformation of Ti–6Al–4V during high cycle fatigue at high R ratios. J Mech Phys Solids 129:61–82. https://doi.org/10.1016/j.jmps.2019.04.017

    Article  CAS  Google Scholar 

  10. Book TA, Sangid MD (2016) Strain localization in Ti–6Al–4V Widmanstätten microstructures produced by additive manufacturing. Mater Charact 122:104–112. https://doi.org/10.1016/j.matchar.2016.10.018

    Article  CAS  Google Scholar 

  11. Britton TB, Birosca S, Preuss M, Wilkinson AJ (2010) Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti–6Al–4V alloy. Scr Mater 62:639–642. https://doi.org/10.1016/j.scriptamat.2010.01.010

    Article  CAS  Google Scholar 

  12. Goh C-H, Neu RW, McDowell DL (2003) Crystallographic plasticity in fretting of Ti–6AL–4V. Int J Plast 19:1627–1650. https://doi.org/10.1016/S0749-6419(02)00039-6

    Article  CAS  Google Scholar 

  13. Mayeur JR, McDowell DL (2007) A three-dimensional crystal plasticity model for duplex Ti–6Al–4V. Int J Plast 23:1457–1485. https://doi.org/10.1016/j.ijplas.2006.11.006

    Article  CAS  Google Scholar 

  14. Zhang M, Zhang J, McDowell DL (2007) Microstructure-based crystal plasticity modeling of cyclic deformation of Ti–6Al–4V. Int J Plast 23:1328–1348. https://doi.org/10.1016/j.ijplas.2006.11.009

    Article  CAS  Google Scholar 

  15. Bridier F, McDowell DL, Villechaise P, Mendez J (2009) Crystal plasticity modeling of slip activity in Ti–6Al–4V under high cycle fatigue loading. Int J Plast 25:1066–1082. https://doi.org/10.1016/j.ijplas.2008.08.004

    Article  CAS  Google Scholar 

  16. Hasija V, Ghosh S, Mills MJ, Joseph DS (2003) Deformation and creep modeling in polycrystalline Ti–6Al alloys. Acta Mater 51:4533–4549. https://doi.org/10.1016/S1359-6454(03)00289-1

    Article  CAS  Google Scholar 

  17. Deka D, Joseph DS, Ghosh S, Mills MJ (2006) Crystal plasticity modeling of deformation and creep in polycrystalline Ti-6242. Metall Mater Trans A 37:1371–1388. https://doi.org/10.1007/s11661-006-0082-2

    Article  Google Scholar 

  18. Dunne FPE, Rugg D, Walker A (2007) Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: application to cold-dwell fatigue in Ti alloys. Int J Plast 23:1061–1083. https://doi.org/10.1016/j.ijplas.2006.10.013

    Article  CAS  Google Scholar 

  19. Kapoor K, Sangid MD (2018) Initializing type-2 residual stresses in crystal plasticity finite element simulations utilizing high-energy diffraction microscopy data. Mater Sci Eng A 729:53–63. https://doi.org/10.1016/j.msea.2018.05.031

    Article  CAS  Google Scholar 

  20. Kapoor K, Yoo YSJ, Book TA, Kacher JP, Sangid MD (2018) Incorporating grain-level residual stresses and validating a crystal plasticity model of a two-phase Ti–6Al–4V alloy produced via additive manufacturing. J Mech Phys Solids 121:447–462. https://doi.org/10.1016/j.jmps.2018.07.025

    Article  CAS  Google Scholar 

  21. Zhang Z, Jun T-S, Britton TB, Dunne FPE (2016) Determination of Ti-6242 α and β slip properties using micro-pillar test and computational crystal plasticity. J Mech Phys Solids 95:393–410. https://doi.org/10.1016/j.jmps.2016.06.007

    Article  CAS  Google Scholar 

  22. Zheng Z, Balint DS, Dunne FPE (2016) Dwell fatigue in two Ti alloys: an integrated crystal plasticity and discrete dislocation study. J Mech Phys Solids 96:411–427. https://doi.org/10.1016/j.jmps.2016.08.008

    Article  CAS  Google Scholar 

  23. Cuddihy MA, Stapleton A, Williams S, Dunne FPE (2017) On cold dwell facet fatigue in titanium alloy aero-engine components. Int J Fatigue 97:177–189. https://doi.org/10.1016/j.ijfatigue.2016.11.034

    Article  CAS  Google Scholar 

  24. Salem AA, Shaffer JB, Kublik RA, Wuertemberger LA, Satko DP (2017) Microstructure-informed cloud computing for interoperability of materials databases and computational models: microtextured regions in Ti alloys. Integr Mater Manuf Innov 6:111–126. https://doi.org/10.1007/s40192-017-0090-7

    Article  Google Scholar 

  25. Pilchak AL, Li J, Rokhlin SI (2014) Quantitative comparison of microtexture in near-alpha titanium measured by ultrasonic scattering and electron backscatter diffraction. Metall Mater Trans A 45:4679–4697. https://doi.org/10.1007/s11661-014-2367-1

    Article  CAS  Google Scholar 

  26. Pilchak AL, Shank J, Tucker JC, Srivatsa S, Fagin PN, Semiatin SL (2016) A dataset for the development, verification, and validation of microstructure-sensitive process models for near-alpha titanium alloys. Integr Mater Manuf Innov 5:14. https://doi.org/10.1186/s40192-016-0056-1

    Article  Google Scholar 

  27. Woodffield AP, Gorman MD, Corderman RR, Sutliff JA, Yamrom B (1995) Effect of microstructure on dwell fatigue behavior of Ti-6242, In: Titan.’95 Sci Technol

  28. Venkatesh V, Tamirisa S, Sartkulvanich J, Calvert K, Dempster I, Saraf V, Salem AA, Rokhlin S, Broderick T, Glavicic MG, Morton T, Shankar R, Pilchak A (2016) Icme of microtexture evolution in dual phase titanium alloys. In: Proceedings of the 13th World Conference on Titanium. John Wiley & Sons, pp 1907–1912. https://doi.org/10.1002/9781119296126.ch319

    Google Scholar 

  29. Mayeur JR, McDowell DL, Neu RW (2008) Crystal plasticity simulations of fretting of Ti–6Al–4V in partial slip regime considering effects of texture. Comput Mater Sci 41:356–365. https://doi.org/10.1016/j.commatsci.2007.04.020

    Article  CAS  Google Scholar 

  30. Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc Sect B. 64:747. https://doi.org/10.1088/0370-1301/64/9/303

    Article  Google Scholar 

  31. Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174:25–28. https://doi.org/10.1007/BF01972547

    Article  CAS  Google Scholar 

  32. Bandyopadhyay R, Prithivirajan V, Sangid MD (2019) Uncertainty quantification in the mechanical response of crystal plasticity simulations. JOM. https://doi.org/10.1007/s11837-019-03551-3

    Article  Google Scholar 

  33. Groeber MA, Jackson MA (2014) DREAM.3D: a digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3:5. https://doi.org/10.1186/2193-9772-3-5

    Article  Google Scholar 

  34. Abaqus Documentation (2017)

  35. Dunne F, Petrinic N (2005) Introduction to computational plasticity. Oxford University Press, Oxford

    Google Scholar 

  36. Kearns JJ (1965) Thermal expansion and preferred orientation in Zircaloy (LWBR Development Programe)

  37. Sangid MD (2013) The physics of fatigue crack initiation. Int J Fatigue 57:58–72. https://doi.org/10.1016/j.ijfatigue.2012.10.009

    Article  CAS  Google Scholar 

  38. Antolovich SD, Armstrong RW (2014) Plastic strain localization in metals: origins and consequences. Prog Mater Sci 59:1–160. https://doi.org/10.1016/j.pmatsci.2013.06.001

    Article  Google Scholar 

  39. Lütjering G, Williams JC (2007) Titanium. Springer, Berlin

    Google Scholar 

  40. Dunne FPE, Walker A, Rugg D (2007) A systematic study of hcp crystal orientation and morphology effects in polycrystal deformation and fatigue. Proc R Soc A Math Phys Eng Sci 463:1467–1489. https://doi.org/10.1098/rspa.2007.1833

    Article  CAS  Google Scholar 

  41. Zhang K, Yang KV, Huang A, Wu X, Davies CHJ (2015) Fatigue crack initiation in as forged Ti–6Al–4V bars with macrozones present. Int J Fatigue 80:288–297. https://doi.org/10.1016/j.ijfatigue.2015.05.020

    Article  CAS  Google Scholar 

  42. Zheng Z, Balint DS, Dunne FPE (2016) Discrete dislocation and crystal plasticity analyses of load shedding in polycrystalline titanium alloys. Int J Plast 87:15–31. https://doi.org/10.1016/j.ijplas.2016.08.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Pratt and Whitney. The authors would like to thank Dr. Vasisht Venkatesh (Materials and Processing Engineering, Pratt and Whitney) for insightful discussions and Dr. Tom Broderick (Materials Engineering at the Air Force Research Laboratory) for suggestions that improved this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Sangid.

Ethics declarations

Conflict of interest

KK and MDS declare no conflicts of interests, while RN and VK are employees of Pratt & Whitney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, K., Noraas, R., Seetharaman, V. et al. Modeling Strain Localization in Microtextured Regions in a Titanium Alloy: Ti–6Al–4V. Integr Mater Manuf Innov 8, 455–467 (2019). https://doi.org/10.1007/s40192-019-00159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-019-00159-y

Keywords

Navigation