Advertisement

Recent Tomographic Imaging Developments at the PSICHE Beamline

  • A. KingEmail author
  • N. Guignot
  • J.-P. Deslandes
  • M. Pelerin
  • I. Joosten
  • D. De Looff
  • J. Li
  • L. Bertrand
  • E. Rosenberg
  • A. Dewaele
  • E. Boulard
  • Y. Le Godec
  • J.-P. Perrillat
  • E. Giovenco
  • G. Morard
  • T. Weitkamp
  • M. Scheel
  • J. Perrin
  • H. Chevreau
  • J.-P. Itié
Thematic Section: 3D Materials Science
Part of the following topical collections:
  1. 3D Materials Science 2019

Abstract

PSICHE is a high-energy, multi-technique beamline at the SOLEIL synchrotron facility. It performs X-ray tomography for materials science and other applications and X-ray diffraction for samples at extreme conditions. The beamline has been in service for user experiments since 2013, but is in continual development to add new capabilities. In this article, we present a series of new developments which combine diffraction and tomography and which are of relevance to the study of materials and manufacturing. By combining these techniques, we can add quantitative structural information from diffraction to morphological information obtained by tomography. Recent developments in very fast tomography allow dynamic processes to be studied in situ and in 3D with a time (frequency) resolution of 2 Hz. We have developed in situ sample environments to enable fast tomography measurements at high temperature and pressure, which will allow future studies of industrial processes such as hot isostatic pressing (HIP).

Keywords

Tomography Diffraction Synchrotron radiation Materials science Extreme conditions In situ 

Notes

Acknowledgements

The Dimax camera was on loan from the beamline ANATOMIX, an Equipment of Excellence (EQUIPEX) funded by the Investments for the Future program of the French National Research Agency (ANR), Project NanoimagesX, Grant No. ANR-11-EQPX-0031.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    King A, Guignot N, Zerbino P, Boulard E, Desjardins K et al (2016) Tomography and imaging at the PSICHE beamline of the SOLEIL synchrotron. Rev Sci Instrum 87:093704.  https://doi.org/10.1063/1.4961365 CrossRefGoogle Scholar
  2. 2.
    Wang Y, Uchida T, Von Dreele R, Rivers ML, Nishiyama N, Funakoshi K, Nozawa A, Keneko H (2004) A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation. J Appl Crystallogr 37:947–956CrossRefGoogle Scholar
  3. 3.
    Li J, Guériau P, Bellato M, King A, Robbiola L, Thoury M, Baillon M, Fossé C, Cohen SX, Moulhérat C, Thomas A, Galtier P, Bertrand L (2019) Synchrotron-based phase mapping in corroded metals: insights from early copper-base artifacts. Anal Chem 91(3):1815–1825.  https://doi.org/10.1021/acs.analchem.8b02744 CrossRefGoogle Scholar
  4. 4.
    Rivers M (2017) High-speed tomography using pink beam at GeoSoilEnviroCARS. In: Conference: SPIE optical engineering + applications, United States.  https://doi.org/10.1117/12.2238240
  5. 5.
    Nielsen SF, Wolf A, Poulsen HF, Ohler M, Lienert U, Owen RA (2000) A conical slit for three-dimensional XRD mapping. J Synchrotron Radiat 7:103–109.  https://doi.org/10.1107/S0909049500000625 CrossRefGoogle Scholar
  6. 6.
    Martins RV, Honkimäki V (2003) Depth resolved strain and phase mapping of dissimilar friction stir welds using high energy synchrotron radiation. Texture Microstruct 35:145–152.  https://doi.org/10.1080/07303300310001628625 CrossRefGoogle Scholar
  7. 7.
    Bleuet P, Welcomme E, Dooryhée E, Susini J et al (2008) Probing the structure of heterogeneous diluted materials by diffraction tomography. Nat Mater 7:468–472.  https://doi.org/10.1038/nmat2168 CrossRefGoogle Scholar
  8. 8.
    Goldstein JI, Newbury DE, Michael JR, Ritchie NWM, Scott JHJ, Joy DC (2018) Scanning electron microscopy and X-ray microanalysis. Springer, New York.  https://doi.org/10.1007/978-1-4939-6676-9 CrossRefGoogle Scholar
  9. 9.
    Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mater Rev 59(1):1–43CrossRefGoogle Scholar
  10. 10.
    Rack A, Scheel M, Hardy L, Curfs C, Bonnin A, Reichart H (2014) Exploiting coherence for real-time studies by single bunch imaging. J Synchrotron Radiat 21:815–818.  https://doi.org/10.1107/S1600577514005852 CrossRefGoogle Scholar
  11. 11.
    pco.dimax HS4. PCO AG, Germany. https://www.pco.de/highspeed-cameras/pcodimax-hs4/. Accessed 29 April 2019
  12. 12.
    Weitkamp T, Scheel M, Giorgetta JL, Joyet V, Le Roux V, Cauchon G, Moreno T, Polack F, Samama JP (2017) The tomography beamline ANATOMIX at Synchrotron SOLEIL. In: IOP conference series: journal of physics conference series, vol 849, p 012037.  https://doi.org/10.1088/1742-6596/849/1/012037
  13. 13.
    Cnudde V, Boone MN (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Eath Sci Rev 123:1–17.  https://doi.org/10.1016/j.earscirev.2013.04.003 CrossRefGoogle Scholar
  14. 14.
    Fusseis F, Xiao X, Schrank C, De Carlo F (2014) A brief guide to synchrotron radiation-based microtomography in (structural) geology and rock mechanics. J Struct Geol 65:1–16.  https://doi.org/10.1016/j.jsg.2014.02.005 CrossRefGoogle Scholar
  15. 15.
    Mao WL, Lin Y, Liu Y, Liu J (2019) Applications for nanoscale imaging at high pressure. Engineering.  https://doi.org/10.1016/j.eng.2019.01.006 CrossRefGoogle Scholar
  16. 16.
    Lin Y, Zeng Q, Yang W, Mao WL (2013) Pressure-induced densification in GeO2 glass: a transmission x-ray microscopy study. Appl Phys Lett 103:261909.  https://doi.org/10.1063/1.4860993 CrossRefGoogle Scholar
  17. 17.
    Philippe J, Le Godec Y, Mezouar M, Berg M et al (2016) Rotating tomography Paris–Edinburgh cell: a novel portable press for micro-tomographic 4-D imaging at extreme pressure/temperature/stress conditions. High Press Res.  https://doi.org/10.1080/08957959.2016.1221951 CrossRefGoogle Scholar
  18. 18.
    Wang Y, Uchida T, Westferro F, Rivers ML et al (2005) High-pressure X-ray tomography microscope: synchrotron computed microtomography at high pressure and temperature. Rev Sci Instrum 76:073709–1–073709–6.  https://doi.org/10.1063/1.1979477 CrossRefGoogle Scholar
  19. 19.
    Boulard E, King A, Guignot N, Deslandes J-P et al (2018) High-speed tomography under extreme conditions at the PSICHE beamline of the SOLEIL Synchrotron. J Synchrotron Radiat 25:818–825.  https://doi.org/10.1107/S1600577518004861 CrossRefGoogle Scholar
  20. 20.
    Urakawa S, Terasaki HP, Funakoshi K, Uesugi K, Yamamoto S (2010) Development of high pressure apparatus for X-ray microtomography at SPring-8. J Phys Conf Ser 215:012026.  https://doi.org/10.1088/1742-6596/215/1/012026 CrossRefGoogle Scholar
  21. 21.
    Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE PressGoogle Scholar
  22. 22.
    Weitkamp T, Haas D, Wegrzynek D, Rack A (2011) ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. J Synchrotron Radiat 18:617–629.  https://doi.org/10.1107/S0909049511002895 CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • A. King
    • 1
    Email author
  • N. Guignot
    • 1
  • J.-P. Deslandes
    • 1
  • M. Pelerin
    • 1
    • 2
  • I. Joosten
    • 3
  • D. De Looff
    • 3
  • J. Li
    • 4
  • L. Bertrand
    • 1
    • 4
  • E. Rosenberg
    • 5
  • A. Dewaele
    • 6
  • E. Boulard
    • 7
  • Y. Le Godec
    • 7
  • J.-P. Perrillat
    • 8
  • E. Giovenco
    • 8
  • G. Morard
    • 7
  • T. Weitkamp
    • 1
  • M. Scheel
    • 1
  • J. Perrin
    • 1
  • H. Chevreau
    • 1
  • J.-P. Itié
    • 1
  1. 1.Synchrotron SOLEILSaint-Aubin, Gif-sur-YvetteFrance
  2. 2.MINES ParisTech, PSL University, Centre des Matériaux UMR CNRS 7633ÉvryFrance
  3. 3.Cultural Heritage Agency of the Netherlands RCEAmsterdamThe Netherlands
  4. 4.IPANEMA, CNRS, ministère de la Culture, UVSQ, USR 3461, Université Paris–SaclayGif-sur-YvetteFrance
  5. 5.IFP Energies NouvellesRueil-MalmaisonFrance
  6. 6.CEA, DAM, DIFArpajonFrance
  7. 7.IMPMC, UMR 7590 - Sorbonne Université/CNRS/MNHN/IRDParisFrance
  8. 8.Laboratoire de Géologie de Lyon, UMR 5276 CNRSENS Lyon – Université Lyon 1Villeurbanne CedexFrance

Personalised recommendations