Advertisement

Sub-minute In Situ Fracture Test in a Laboratory CT Scanner

  • Clément Jailin
  • Amine Bouterf
  • Rafael Vargas
  • François Hild
  • Stéphane RouxEmail author
Thematic Section: 3D Materials Science
  • 21 Downloads
Part of the following topical collections:
  1. 3D Materials Science 2019

Abstract

The present study aims at demonstrating the feasibility of performing a fracture test in less than 1 min in a laboratory CT scanner despite the severe time constraints of tomography acquisition. After introducing the basic concepts of projection-based digital volume correlation, the specific implementation of this methodology to a wedge splitting test on a refractory material is presented. The kinematics of the test is described over a mesh tailored to the sample geometry, and the elastic behavior of the sample is exploited through finite element computations to provide sensitivity fields of experimental boundary conditions to allow for their “measurements.” Enhancing the simulation to account for crack advance with extended finite element analyses allows the sensitivity of the procedure to the crack position to be assessed. A confidence interval for the refractory toughness is finally obtained.

Keywords

Castable refractory Digital volume correlation Extended finite element analyses Fracture energy Wedge splitting test 

Notes

Acknowledgements

This work benefited from the support of the French “Agence Nationale de la Recherche” through the “Investissements d’avenir” program under the reference “ANR-10-EQPX-37 MATMECA.” The PhD project of RV is supported through grant #2018/23081-0, São Paulo Research Foundation (FAPESP). The authors thank Profs. R.B. Canto and J.A. Rodrigues for fruitful discussions.

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing interests.

References

  1. 1.
    Abaqus GUI (2011) Abaqus 6:11Google Scholar
  2. 2.
    Baruchel J, Buffière JY, Maire E, Merle P, Peix G (eds) (2000) X-ray tomography in material sciences. Hermès Science, ParisGoogle Scholar
  3. 3.
    Bay BK (2008) Methods and applications of digital volume correlation. J Strain Anal 43:745–760Google Scholar
  4. 4.
    Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39:217–226Google Scholar
  5. 5.
    Bornert M, Chaix JM, Doumalin P, Dupré JC, Fournel T, Jeulin D, Maire E, Moreaud M, Moulinec H (2004) Mesure tridimensionnelle de champs cinématiques par imagerie volumique pour l’analyse des matériaux et des structures. Inst Mes Métrol 4:43–88Google Scholar
  6. 6.
    Brühwiler E, Wittmann FH (1990) The wedge splitting test, a new method of performing stable fracture mechanics tests. Eng Fract Mech 35(1):117–125Google Scholar
  7. 7.
    Buffière JY, Maire E, Adrien J, Masse JP, Boller E (2010) In situ experiments with X ray tomography: an attractive tool for experimental mechanics. Exp Mech 50(3):289–305Google Scholar
  8. 8.
    Buffière JY, Maire E, Cloetens P, Lormand G, Fougères R (1999) Characterisation of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography. Acta Mater 47(5):1613–1625Google Scholar
  9. 9.
    Buljac A, Jailin C, Mendoza A, Taillandier-Thomas T, Bouterf A, Neggers J, Smaniotto B, Hild F, Roux S (2018) Digital volume correlation: review on achievements and challenges. Exp Mech 58(5):661–708Google Scholar
  10. 10.
    Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350Google Scholar
  11. 11.
    Cormen TH (2009) Introduction to algorithms, 3rd edn. MIT Press, CambridgeGoogle Scholar
  12. 12.
    Desrues J, Viggiani G, Bésuelle P (eds) (2006) Advances in X-ray tomography for geomaterials. Wiley/ISTE, LondonGoogle Scholar
  13. 13.
    Feldkamp LA, Davis LC, Kress JW (1984) Practical cone beam algorithm. J Opt Soc Am A 1:612–619Google Scholar
  14. 14.
    Guvenilir A, Breunig TM, Kinney JH, Stock SR (1997) Direct observation of crack opening as a function of applied load in the interior of a notched tensile sample of Al-Li 2090. Acta Mater 45(5):1977–1987Google Scholar
  15. 15.
    Herman GT (1979) Correction for beam hardening in computed tomography. Phys Med Biol 24(1):81Google Scholar
  16. 16.
    Hild F, Bouterf A, Chamoin L, Mathieu F, Neggers J, Pled F, Tomičević Z, Roux S (2016) Toward 4D mechanical correlation. Adv Mech Simul Eng Sci 3(1):1–26Google Scholar
  17. 17.
    Jailin C, Bouterf A, Poncelet M, Roux S (2017) In situ \(\mu\)ct-scan mechanical tests: fast 4d mechanical identification. Exp Mech 57(8):1327–1340Google Scholar
  18. 18.
    Jailin C, Buljac A, Bouterf A, Hild F, Roux S (2018) Fast four-dimensional tensile test monitored via X-ray computed tomography: single projection based digital volume correlation dedicated to slender samples. J Strain Anal Eng Des 53(7):473–484Google Scholar
  19. 19.
    Jailin C, Buljac A, Bouterf A, Hild F, Roux S (2019) Fast four-dimensional tensile test monitored via x-ray computed tomography: elastoplastic identification from radiographs. J Strain Anal Eng Des 54(1):44–53Google Scholar
  20. 20.
    Kak AC, Slaney M (2001) Principles of computerized tomographic imaging. Society of Industrial and Applied Mathematics, PhiladelphiaGoogle Scholar
  21. 21.
    Ladevèze P (2012) Nonlinear computational structural mechanics: new approaches and non-incremental methods of calculation. Springer, BerlinGoogle Scholar
  22. 22.
    Ladevèze P (2014) PGD in linear and nonlinear computational solid mechanics. In: Separated representations and PGD-based model reduction. Springer, pp 91–152Google Scholar
  23. 23.
    Leclerc H, Roux S, Hild F (2015) Projection savings in CT-based digital volume correlation. Exp Mech 55(1):275–287Google Scholar
  24. 24.
    Maire E, Buffière JY, Salvo L, Blandin JJ, Ludwig W, Létang JM (2001) On the application of X-ray microtomography in the field of materials science. Adv Eng Mater 3(8):539–546Google Scholar
  25. 25.
    Maire E, Le Bourlot C, Adrien J, Mortensen A, Mokso R (2016) 20-Hz X-ray tomography during an in situ tensile test. Int J Fract 200(1):3–12Google Scholar
  26. 26.
    Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mater Rev 59(1):1–43Google Scholar
  27. 27.
    Neggers J, Mathieu F, Hild F, Roux S, Swiergiel N (2017) Improving full-field identification using progressive model enrichments. Int J Solids Struct 118:213–223Google Scholar
  28. 28.
    Nouy A (2010) A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput Methods Appl Mech Eng 199(23):1603–1626Google Scholar
  29. 29.
    Popper KR (1935) Logik der Forschung. Verlag von Julius Springer, ViennaGoogle Scholar
  30. 30.
    Rannou J, Limodin N, Réthoré J, Gravouil A, Ludwig W, Ba\(\backslash\)\(\backslash\)ietto M C, Buffière JY,  Combescure A, Hild F, Roux S (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Methods Appl Mech Eng 199:1307–1325Google Scholar
  31. 31.
    Roux S, Hild F, Viot P, Bernard D (2008) Three dimensional image correlation from X-Ray computed tomography of solid foam. Compos Part A 39(8):1253–1265Google Scholar
  32. 32.
    Salvo L, Cloetens P, Maire E, Zabler S, Blandin JJ, Buffiere JY, Ludwig W, Boller E, Bellet D, Josserond C (2003) X-ray micro-tomography an attractive characterisation technique in materials science. Nucl Instr Methods Phys Res B 200:273–286Google Scholar
  33. 33.
    Smith TS, Bay BK, Rashid MM (2002) Digital volume correlation including rotational degrees of freedom during minimization. Exp Mech 42(3):272–278Google Scholar
  34. 34.
    Stock SR (2008) Recent advances in X-Ray microtomography applied to materials. Int Mater Rev 53(3):129–181Google Scholar
  35. 35.
    Taillandier-Thomas T, Roux S, Hild F (2016) Soft route to 4D tomography. Phys Rev Lett 117:025501Google Scholar
  36. 36.
    Tarantola A (1987) Inverse problems theory. Methods for data fitting and model parameter estimation. Elsevier Applied Science, SouthamptonGoogle Scholar
  37. 37.
    Tschegg EK, Equipment and appropriate specimen shapes for tests to measure fracture values. Austrian Patent Office, Patent AT-390328Google Scholar
  38. 38.
    van Aarle W, Palenstijn WJ, De Beenhouwer J, Altantzis T, Bals S, Batenburg KJ, Sijbers J (2015) The ASTRA toolbox: a platform for advanced algorithm development in electron tomography. Ultramicroscopy 157:35–47Google Scholar
  39. 39.
    Verhulp E, van Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech 37(9):1313–1320Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.LMT (ENS Paris-Saclay/CNRS/Univ. Paris-Saclay)CachanFrance
  2. 2.Graduate Program in Materials Science and EngineeringFederal University of São Carlos (UFSCar)São CarlosBrazil

Personalised recommendations