Advertisement

Three-Dimensional Characterization of Cracks in a Columnar Thermal Barrier Coating System for Gas Turbine Applications

  • Anne Dennstedt
  • Fabrice Gaslain
  • Marion Bartsch
  • Vincent Guipont
  • Vincent MaurelEmail author
Thematic Section: 3D Materials Science
  • 22 Downloads
Part of the following topical collections:
  1. 3D Materials Science 2019

Abstract

Thermal barrier coatings (TBC) are multilayered systems comprising a metallic oxidation protection layer or so-called bond coat, a ceramic topcoat, and a thermally grown aluminum oxide developing at the interface. The coating systems fail typically by delamination cracking near this interface, which has a complex three-dimensional morphology influencing the crack path. This study combines laser shock adhesion test to introduce an artificial interfacial crack, known in size and location, and focused ion beam coupled with scanning electron microscopy 3D serial sectioning tomography. Methods for proper segmentation of cracks and adjacent materials and quantitative evaluation of the complex crack system are proposed and applied for analyzing the crack tip region. Finally, derived from the three-dimensional segmentation, a finite element model has been achieved and used for thermal analysis highlighting the crucial role of local damage on thermal conductivity of the TBC.

Keywords

Thermal barrier coating (TBC) Laser shock adhesion test (LASAT) Focus ion beam (FIB) 3D imaging 

Notes

Acknowledgements

Part of this work was carried out within the MATMECA consortium and supported by the ANR under contract number ANR-10-EQUIPEX-37 14. Additionally, we acknowledge funding by the German Science Foundation under contract SFB TRR 103, project A3. A.D. thanks the Zuse Institute Berlin (ZIB) for access to the AVIZO software and for fruitful discussions.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

Supplementary material 1 (mp4 18319 KB)

References

  1. 1.
    Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS (2001) Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci 46(5):505–553CrossRefGoogle Scholar
  2. 2.
    Nicholls JR, Lawson KJ, Johnstone A, Rickerby DS (2002) Methods to reduce the thermal conductivity of EB-PVD TBCS. Surf Coat Technol 151:383–391CrossRefGoogle Scholar
  3. 3.
    Yanar N, Pettit F, Meier G (2006) Failure characteristics during cyclic oxidation of yttria stabilized zirconia thermal barrier coatings deposited via electron beam physical vapor deposition on platinum aluminide and on nicocraly bond coats with processing modifications for improved performances. Metall Mater Trans A 37(5):1563–1580CrossRefGoogle Scholar
  4. 4.
    Bartsch M, Baufeld B, Dalkilic S, Chernova L, Heinzelmann M (2008) Fatigue cracks in a thermal barrier coating system on a superalloy in multiaxial thermomechanical testing. Int J Fatigue 30(2):211–218CrossRefGoogle Scholar
  5. 5.
    Hernandez MT, Cojocaru D, Bartsch M, Karlsson Anette M (2011) On the opening of a class of fatigue cracks due to thermo-mechanical fatigue testing of thermal barrier coatings. Comput Mater Sci 50(9):2561–2572CrossRefGoogle Scholar
  6. 6.
    Chaudhury ZA, Newaz GM, Nusier SQ, Ahmed T, Thomas RL (1999) Chronological evaluation of interfacial damage in tbc due to thermal cycling. J Mater Sci 34(10):2475–2481CrossRefGoogle Scholar
  7. 7.
    Zavattieri PD, Jr Hector LG, Bower AF (2008) Cohesive zone simulations of crack growth along a rough interface between two elastic–plastic solids. Eng Fract Mech 75(15):4309–4332CrossRefGoogle Scholar
  8. 8.
    Bacos MP, Dorvaux JM, Landais S, Lavigne O, Mévrel R, Poulain M, Rio C, Vidal-Sétif MH (2011) 10 years-activities at onera on advanced thermal barrier coatings. AerospaceLab (3):1–14Google Scholar
  9. 9.
    Buffiere J-Y, Maire E, Adrien J, Masse J-P, Boller E (2010) In situ experiments with X-ray tomography: an attractive tool for experimental mechanics. Exp Mech 50(3):289–305CrossRefGoogle Scholar
  10. 10.
    Helfen L, Baumbach T, Pernot P, Mikulík P, DiMichiel M, Baruchel J (2006) High-resolution three-dimensional imaging by synchrotron-radiation computed laminography. Proc SPIE 6318:63180NCrossRefGoogle Scholar
  11. 11.
    Khoshkhou D, Mostafavi M, Reinhard C, Taylor MP, Rickerby DS, Edmonds IM, Evans HE, Marrow TJ, Connolly BJ (2016) Three-dimensional displacement mapping of diffused Pt thermal barrier coatings via synchrotron X-ray computed tomography and digital volume correlation. Scr Mater 115:100–103CrossRefGoogle Scholar
  12. 12.
    Morgeneyer TF, Besson J (2011) Flat to slant ductile fracture transition: tomography examination and simulations using shear-controlled void nucleation. Scr Mater 65(11):1002–1005CrossRefGoogle Scholar
  13. 13.
    Maurel V, Soulignac R, Helfen L, Morgeneyer TF, Koster A, Remy L (2013) Three-dimensional damage evolution measurement in EB-PVD TBC using synchrotron laminography. Oxid Met 79(3–4, SI):313–323CrossRefGoogle Scholar
  14. 14.
    Duhamel C, Caballero J, Couvant T, Crépin J, Gaslain F, Guerre C, Le H-T, Wehbi M (2017) Intergranular oxidation of nickel-base alloys: potentialities of focused ion beam tomography. Oxid Met 88(3–4):447–457CrossRefGoogle Scholar
  15. 15.
    Burns AJ, Subramanian R, Kempshall BW, Sohn YH (2004) Microstructure of as-coated thermal barrier coatings with varying lifetimes. Surf Coat Technol 177:89–96CrossRefGoogle Scholar
  16. 16.
    Chen X, Shaw C, Gelman L, Grattan KTV (2019) Advances in test and measurement of the interface adhesion and bond strengths in coating-substrate systems, emphasising blister and bulk techniques. Measurement 139:387–402CrossRefGoogle Scholar
  17. 17.
    Gupta V, Argon AS, Cornie JA, Parks DM (1990) Measurement of interface strength by laser-pulse-induced spallation. Mater Sci Eng A 126(1–2):105–117CrossRefGoogle Scholar
  18. 18.
    Guipont V, Begue G, Fabre G, Maurel V (2019) Buckling and interface strength analyses of thermal barrier boatings combining Laser Shock Adhesion Test to thermal cycling. Surf Coat Technol [under revision (special issue 46th ICMCTF)]Google Scholar
  19. 19.
    Sapardanis H, Maurel V, Köster A, Duvinage S, Borit F, Guipont V (2016) Influence of macroscopic shear loading on the growth of an interfacial crack initiated from a ceramic blister processed by laser shock. Surf Coat Technol 291:430–443CrossRefGoogle Scholar
  20. 20.
    Theveneau, M, Guipont, V, Marchand, B, Coudon, F, Maurel V (2019) Damage monitoring and thermal cycling life of thermal barrier coating involving LASAT (laser shock adhesion test). Surf Coat Technol [under review (special issue 46th ICMCTF)]Google Scholar
  21. 21.
    Fabre G (2013) Influence des propriétés optiques et de l’endommagement de barrières thermiques EB-PVD pour la mesure d’adhérence par choc laser LASAT-2D. Ph.D. thesis, Mines ParisTech (in French) Google Scholar
  22. 22.
    Linear stack alignment with sift. https://imagej.net/Linear_Stack_Alignment_with_SIFT#cite_ref-1. Accessed 22 Apr 2019
  23. 23.
    Mumm DR, Evans AG, Spitsberg IT (2001) Characterization of a cyclic displacement instability for a thermally grown oxide in a thermal barrier system. Acta Mater 49(12):2329–2340CrossRefGoogle Scholar
  24. 24.
    Karlsson AM, Xu T, Evans AG (2002) The effect of the thermal barrier coating on the displacement instability in thermal barrier systems. Acta Mater 50(5):1211–1218CrossRefGoogle Scholar
  25. 25.
    Zotov N, Bartsch M, Eggeler G (2009) Thermal barrier coating systems analysis of nanoindentation curves. Surf Coat Technol 203(14):2064–2072CrossRefGoogle Scholar
  26. 26.
    Avizo for materials science. https://www.thermofisher.com. Accessed 13 Apr 2019
  27. 27.
    Bégué G, Fabre G, Guipont V, Jeandin M, Bilhe P, Guedou JY, Lepoutre F (2013) Laser shock adhesion test (LASAT) of EB-PVD TBCs: towards an industrial application. Surf Coat Technol 237:305–312CrossRefGoogle Scholar
  28. 28.
    Faulhaber S, Mercer C, Moon M-W, Hutchinson JW, Evans AG (2006) Buckling delamination in compressed multilayers on curved substrates with accompanying ridge cracks. J Mech Phys Solids 54(5):1004–1028CrossRefGoogle Scholar
  29. 29.
    Zset software, non-linear material and structure analysis suite. http://www.zset-software.com. Accessed 19 July 2019
  30. 30.
    Baufeld B, Bartsch M, Dalkilic S, Heinzelmann M (2005) Defect evolution in thermal barrier coating systems under multi-axial thermomechanical loading. Surf Coat Technol 200(5–6):1282–1286CrossRefGoogle Scholar
  31. 31.
    White FM (1988) Heat and mass transfer. Addison-Wesley, BostonGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.MAT - Centre des Materiaux, CNRS UMR 7633MINES ParisTech, PSL Research UniversityEvryFrance
  2. 2.Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)Institut für Werkstoff-ForschungCologneGermany

Personalised recommendations