Advertisement

Phase Fraction and Evolution of Additively Manufactured (AM) 15-5 Stainless Steel and Inconel 625 AM-Bench Artifacts

  • Fan ZhangEmail author
  • Lyle E. Levine
  • Andrew J. Allen
  • Sandra W. Young
  • Maureen E. Williams
  • Mark R. Stoudt
  • Kil-Won Moon
  • Jarred C. Heigel
  • Jan Ilavsky
Thematic Section: Additive Manufacturing Benchmarks 2018
  • 7 Downloads
Part of the following topical collections:
  1. Additive Manufacturing Benchmarks 2018

Abstract

A proper understanding of the structure and microstructure of additively manufactured (AM) alloys is essential not only to the prediction and assessment of their material properties, but also to the validation and verification of computer models needed to advance AM technologies. To accelerate AM development, as part of the AM-Bench effort, we conducted rigorous synchrotron-based X-ray scattering and diffraction experiments on two types of AM alloys (AM 15-5 stainless steel and AM Inconel 625). Taking advantage of the high penetration of synchrotron hard X-rays, we determined the phases present in these alloys under different build conditions and their statistically meaningful phase fractions using high-resolution X-ray diffraction. Using in situ multi-scale X-ray scattering and diffraction, we quantitatively analyzed the phase evolution and development of major precipitates in these alloys as a function of time during stress relief heat treatments. These results serve to validate AM microstructure models and provide input to higher-level AM processing and property models to predict the material properties and performances.

Keywords

Additive manufacturing Metals Stainless steel Nickel-based super alloy X-ray diffraction X-ray scattering Precipitation Microstructure Atomic structure 

Notes

Acknowledgements

Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. This research was partially supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the US Department of Energy Office of Science and the National Nuclear Security Administration.

References

  1. 1.
    Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392CrossRefGoogle Scholar
  2. 2.
    Keller T, Lindwall G, Ghosh S, Ma L, Lane BM, Zhang F, Kattner UR, Lass EA, Heigel JC, Idell Y (2017) Application of finite element, phase-field, and calphad-based methods to additive manufacturing of Ni-based superalloys. Acta Mater 139:244–253CrossRefGoogle Scholar
  3. 3.
    Kok Y, Tan XP, Wang P, Nai M, Loh NH, Liu E, Tor SB (2018) Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Mater Des 139:565–586CrossRefGoogle Scholar
  4. 4.
    King WE, Anderson AT, Ferencz R, Hodge N, Kamath C, Khairallah SA, Rubenchik AM (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev 2(4):041304CrossRefGoogle Scholar
  5. 5.
    Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CC, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89CrossRefGoogle Scholar
  6. 6.
    Seifi M, Salem A, Beuth J, Harrysson O, Lewandowski JJ (2016) Overview of materials qualification needs for metal additive manufacturing. JOM 68(3):747–764CrossRefGoogle Scholar
  7. 7.
    Megahed M, Mindt H-W, N’Dri N, Duan H, Desmaison O (2016) Metal additive-manufacturing process and residual stress modeling. Integr Mater Manuf Innov 5(1):4CrossRefGoogle Scholar
  8. 8.
    Jared BH, Aguilo MA, Beghini LL, Boyce BL, Clark BW, Cook A, Kaehr BJ, Robbins J (2017) Additive manufacturing: toward holistic design. Scr Mater 135:141–147CrossRefGoogle Scholar
  9. 9.
    Levine L, Lane BM, Heigel JC, Migler K, Stoudt MR, Phan T, Ricker R, Strantza M, Hill M, Zhang F, Seppala J, Garboczi E, Bain E, Cole D, Allen AJ, Fox J, Campbell CE (2019) Outcomes and conclusions from the 2018 AM-Bench measurements, challenge problems, modeling submissions, and conference. Integr Mater Manuf Innov (under review)Google Scholar
  10. 10.
    Wang X-L, Almer J, Liu C, Wang Y, Zhao J, Stoica A, Haeffner D, Wang W (2003) In situ synchrotron study of phase transformation behaviors in bulk metallic glass by simultaneous diffraction and small angle scattering. Phys Rev Lett 91(26):265501CrossRefGoogle Scholar
  11. 11.
    Dubois J, Thilly L, Renault P, Lecouturier F, Di Michiel M (2010) Thermal stability of nanocomposite metals: in situ observation of anomalous residual stress relaxation during annealing under synchrotron radiation. Acta Mater 58(19):6504–6512CrossRefGoogle Scholar
  12. 12.
    Zhang F, Levine LE, Allen AJ, Campbell CE, Lass EA, Cheruvathur S, Stoudt MR, Williams ME, Idell Y (2017) Homogenization kinetics of a nickel-based superalloy produced by powder bed fusion laser sintering. Scr Mater 131:98–102CrossRefGoogle Scholar
  13. 13.
    Zhang F, Levine LE, Allen AJ, Campbell CE, Creuziger AA, Kazantseva N, Ilavsky J (2016) In situ structural characterization of ageing kinetics in aluminum alloy 2024 across angstrom-to-micrometer length scales. Acta Mater 111:385–398CrossRefGoogle Scholar
  14. 14.
    Zhang F, Levine LE, Allen AJ, Stoudt MR, Lindwall G, Lass EA, Williams ME, Idell Y, Campbell CE (2018) Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion. Acta Mater 152:200–214CrossRefGoogle Scholar
  15. 15.
    Lee PL, Shu D, Ramanathan M, Preissner C, Wang J, Beno MA, Von Dreele RB, Ribaud L, Kurtz C, Antao SM (2008) A twelve-analyzer detector system for high-resolution powder diffraction. J Synchrotron Radiat 15(5):427–432CrossRefGoogle Scholar
  16. 16.
    Black DR, Windover D, Henins A, Filliben J, Cline JP (2011) Certification of standard reference material 660B. Powder Diffr 26(2):155–158CrossRefGoogle Scholar
  17. 17.
    Toby BH, Von Dreele RB (2013) GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46(2):544–549CrossRefGoogle Scholar
  18. 18.
    Ilavsky J, Zhang F, Andrews RN, Kuzmenko I, Jemian PR, Levine LE, Allen AJ (2018) Development of combined microstructure and structure characterization facility for in situ and operando studies at the advanced photon source. J Appl Crystallogr 51(3):867–882CrossRefGoogle Scholar
  19. 19.
    Ilavsky J, Jemian PR, Allen AJ, Zhang F, Levine LE, Long GG (2009) Ultra-small-angle X-ray scattering at the advanced photon source. J Appl Crystallogr 42(3):469–479CrossRefGoogle Scholar
  20. 20.
    Allen AJ, Zhang F, Kline RJ, Guthrie WF, Ilavsky J (2017) Nist standard reference material 3600: absolute intensity calibration standard for small-angle X-ray scattering. J Appl Crystallogr 50(2):462–474CrossRefGoogle Scholar
  21. 21.
    Zhang F, Ilavsky J, Long GG, Quintana JP, Allen AJ, Jemian PR (2010) Glassy carbon as an absolute intensity calibration standard for small-angle scattering. Metall Mater Trans 41(5):1151–1158CrossRefGoogle Scholar
  22. 22.
    Gilles R, Keiderling U, Wiedenmann A (1998) Silver behenate powder as a possible low-angle calibration standard for small-angle neutron scattering. J Appl Crystallogr 31(6):957–959CrossRefGoogle Scholar
  23. 23.
    Lass EA, Stoudt MR, Williams ME, Katz MB, Levine LE, Phan TQ, Gnaeupel-Herold TH, Ng DS (2017) Formation of the Ni3Nb δ-phase in stress-relieved inconel 625 produced via laser powder-bed fusion additive manufacturing. Metall Mater Trans A 48(11):5547–5558CrossRefGoogle Scholar
  24. 24.
    Ilavsky J, Jemian PR (2009) Irena: tool suite for modeling and analysis of small-angle scattering. J Appl Crystallogr 42(2):347–353CrossRefGoogle Scholar
  25. 25.
    Ilavsky J (2012) Nika: software for two-dimensional data reduction. J Appl Crystallogr 45(2):324–328CrossRefGoogle Scholar
  26. 26.
    Idell Y, Levine LE, Allen AJ, Zhang F, Campbell CE, Olson G, Gong J, Snyder D, Deutchman H (2016) Unexpected δ-phase formation in additive-manufactured Ni-based superalloy. JOM 68(3):950–959CrossRefGoogle Scholar
  27. 27.
    Petrović ZS, Milić J, Zhang F, Ilavsky J (2017) Fast-responding bio-based shape memory thermoplastic polyurethanes. Polymer 121:26–37CrossRefGoogle Scholar
  28. 28.
    Bajguirani HH (2002) The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel. Mater Sci Eng, A 338(1–2):142–159CrossRefGoogle Scholar
  29. 29.
    Lindwall G, Campbell C, Lass E, Zhang F, Stoudt M, Allen A, Levine L (2019) Simulation of TTT curves for additively manufactured Inconel 625. Metall Mater Trans A 50(1):457–467CrossRefGoogle Scholar
  30. 30.
    Stoudt MR, Lass E, Ng DS, Williams ME, Zhang F, Campbell CE, Lindwall G, Levine LE (2018) The influence of annealing temperature and time on the formation of δ-phase in additively-manufactured Inconel 625. Metall Mater Trans A 49(7):3028–3037CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Fan Zhang
    • 1
    Email author
  • Lyle E. Levine
    • 2
  • Andrew J. Allen
    • 1
  • Sandra W. Young
    • 2
  • Maureen E. Williams
    • 2
  • Mark R. Stoudt
    • 2
  • Kil-Won Moon
    • 2
  • Jarred C. Heigel
    • 3
  • Jan Ilavsky
    • 4
  1. 1.Materials Measurement Science DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Materials Science and Engineering DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  3. 3.Intelligent Systems DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  4. 4.X-ray Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations