Skip to main content
Log in

AMB2018-04: Benchmark Physical Property Measurements for Powder Bed Fusion Additive Manufacturing of Polyamide 12

  • Thematic Section: Additive Manufacturing Benchmarks 2018
  • Published:
Integrating Materials and Manufacturing Innovation Aims and scope Submit manuscript

Abstract

Laser sintering (LS) of polyamide 12 (PA12) is increasingly being adopted for industrial production of end-use parts, yet the complexity of this process coupled with the lack of organized, rigorous, publicly available process-structure-physical property datasets exposes manufacturers and customers to risks of unacceptably poor part quality and high costs. Although an extensive scientific literature has been developed to address some of these concerns, results are distributed among numerous reports based on different machines, materials, process parameters, and users. In this study, a single commercially important LS PA12 feedstock has been processed along four build dimensions of a modern production LS machine, characterized by a wide range of physical techniques, and compared to the same material formed by conventional melt processing. Results are discussed in the context of the literature, offering novel insights including distributions of particle size and shape, localization of semicrystalline phase changes due to LS processing, effect of chemical aging on melt viscosity, porosity orientation relative to LS build axes, and microstructural effects on tensile properties and failure mechanisms. The resulting datasets will be made publicly available to modelers and practitioners for the purpose of improving certifiability and repeatability of end-use parts manufactured by LS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Identification of specific commercial equipment or materials in this publication is not intended to imply recommendation or endorsement by the Army Research Laboratory, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose

  2. Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

References

  1. (2014) ASTM F3091-14 standard specification for powder bed fusion of plastic materials. ASTM International: West Conshohocken

  2. Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21(1):22–37

  3. Huang Y, Leu MC, Mazumder J, Donmez A (2015) Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J Manuf Sci Eng 137(1):014001–014001-10

    Article  Google Scholar 

  4. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Computer Aided Design 69:65–89

    Article  Google Scholar 

  5. Hopkinson N (2006) Production economics of rapid manufacture. In: Hopkinson N, Hague RJM, Dickens P (eds) Rapid manufacturing: an industrial revolution for the digital age. Wiley, West Sussex, pp 147–158

    Chapter  Google Scholar 

  6. Goodridge RD, Tuck CJ, Hague RJM (2012) Laser sintering of polyamides and other polymers. Prog Mater Sci 57(2):229–267

    Article  CAS  Google Scholar 

  7. Yuan S, Shen F, Chua CK, Zhou K (2018) Polymeric composites for powder-based additive manufacturing: materials and applications. Prog Polym Sci 91:141–168

  8. Schmid M (2018) Laser sintering with plastics. Carl Hanser Verlag GmbH & Co. KG, Munich

    Book  Google Scholar 

  9. Fox B (2006) Rapid manufacture in the aeronautical industry. In: Hopkinson N, Hague RJM, Dickens P (eds) Rapid manufacturing: an industrial revolution for the digital age. Wiley, West Sussex, pp 221–232

    Chapter  Google Scholar 

  10. Wooten J (2006) Aeronautical case studies using rapid manufacture. In: Hopkinson N, Hague RJM, Dickens P (eds) Rapid manufacturing: an industrial revolution for the digital age. Wiley, West Sussex, pp 233–240

    Chapter  Google Scholar 

  11. Lyons B (2012) Additive manufacturing in aerospace: examples and research outlook. The Bridge: Linking Engineering and Society 42(1):13–19

    Google Scholar 

  12. Khajavi SH, Partanen J, Holmström J (2014) Additive manufacturing in the spare parts supply chain. Comput Ind 65(1):50–63

    Article  Google Scholar 

  13. Spielman R (2006) Space applications. In: Hopkinson N, Hague RJM, Dickens P (eds) Rapid manufacturing: an industrial revolution for the digital age. Wiley, West Sussex, pp 241–248

    Chapter  Google Scholar 

  14. Reuters, world’s biggest truck maker turns to 3D printing for spare parts. Fortune 2016, http://fortune.com/2016/07/13/daimler-trucks-3d-printing-spare/. Accessed 31 Oct 2018

  15. LS allows 928 motorsports to improve Porsche 928 performance. Stratasys. https://www.stratasysdirect.com/resources/case-studies/3d-printing-selective-laser-sintering-porsche-engine-928-motorsports. Accessed 31 Oct 2018

  16. Jin Y-a, Plott J, Chen R, Wensman J, Shih A (2015) Additive manufacturing of custom orthoses and prostheses—a review. Procedia CIRP 36:199–204

    Article  Google Scholar 

  17. Deckers JP, Vermandel M, Geldhof J, Vasiliauskaite E, Forward M, Plasschaert F (2017) Development and clinical evaluation of laser-sintered ankle foot orthoses. Plast, Rubber Compos 47(1):42–46

    Article  CAS  Google Scholar 

  18. Faustini MC, Neptune RR, Crawford RH, Stanhope SJ (2008) Manufacture of passive dynamic ankle-foot orthoses using selective laser sintering. IEEE Trans Biomed Eng 55(2 Pt 1):784–790

    Article  Google Scholar 

  19. Harper NG, Russell EM, Wilken JM, Neptune RR (2014) Selective laser sintered versus carbon fiber passive-dynamic ankle-foot orthoses: a comparison of patient walking performance. J Biomech Eng 136(9):091001–091001–7

    Article  Google Scholar 

  20. South BJ, Fey NP, Bosker G, Neptune RR (2009) Manufacture of energy storage and return prosthetic feet using selective laser sintering. J Biomech Eng 132(1):015001–015001-6

    Article  Google Scholar 

  21. Idaho steel embraces 3D printing to deliver superior-quality parts faster. 3D Systems. https://www.3dsystems.com/learning-center/case-studies/idaho-steel-embraces-3d-printing-deliver-superior-quality-parts-faster. Accessed 31 Oct 2018

  22. Balzereit S, Proes F, Altstädt V, Emmelmann C (2018) Properties of copper modified polyamide 12-powders and their potential for the use as laser direct structurable electronic circuit carriers. Addit. Manuf. 23:347–354

    Article  CAS  Google Scholar 

  23. Beta LAYOUT—multi-dimensional circuit carriers using additive manufacturing. EOS. https://www.eos.info/case_studies/beta-layout-3d-printed-multidemsional-circuit-carriers. Accessed 31 Oct 2018

  24. New Balance pushes the limits of innovation with 3D printing (2013) New Balance. https://www.newbalance.com/press-releases/id/press_2013_New_Balance_Pushes_Limits_of_Innovation_with_3D_Printing.html. Accessed 31 Oct 2018

  25. Nike debuts first-ever football cleat built using 3D printing technology (2013) Nike News. https://news.nike.com/news/nike-debuts-first-ever-football-cleat-built-using-3d-printing-technology. Accessed 31 Oct 2018

  26. Nike football accelerates innovation with 3D printed “Concept Cleat” for Shuttle (2014) Nike News. https://news.nike.com/news/nike-football-accelerates-innovation-with-3d-printed-concept-cleat-for-shuttle. Accessed 31 Oct 2018

  27. The future of running is here (2016) New Balance. https://www.newbalance.com/article?id=4041. Accessed 31 Oct 2018

  28. Kinematics dress (2014) Nervous System. https://n-e-r-v-o-u-s.com/projects/sets/kinematics-dress/. Accessed 31 Oct 2018

  29. SLS design guide. 3D Systems. https://www.3dsystems.com/sites/default/files/2017-01/3dsystems-sls-designguide-2016.pdf. Accessed 31 Oct 2018

  30. Bourell DL, Watt TJ, Leigh DK, Fulcher B (2014) Performance limitations in polymer laser sintering. Phys Procedia 56:147–156

    Article  Google Scholar 

  31. Niino T, Sato K (2009) Effect of powder compaction in plastic laser sintering fabrication. Proceedings of the Solid Freeform Fabrication Symposium, pp 193–205

  32. Aharoni SM (1997) n-Nylons: their synthesis, structure, and properties. Wiley, Chichester

    Google Scholar 

  33. Puffr R, Raab M, Dolezel B (1991) Properties. In: Puffr R, Kubanek V (eds) Lactam-based polyamides volume I: polymerization, structure, and properties. CRC Press, Boca Raton, pp 187–260

    Google Scholar 

  34. Holmes DR, Bunn CW, Smith DJ (1955) The crystal structure of polycaproamide: nylon 6. J Polym Sci 17(84):159–177

    Article  CAS  Google Scholar 

  35. Bradbury EM, Brown L, Elliott A, Parry DAD (1965) The structure of the gamma form of polycaproamide (nylon 6). Polymer 6(9):465–482

    Article  CAS  Google Scholar 

  36. Rhee S, White JL (2002) Crystal structure and morphology of biaxially oriented polyamide 12 films. J Polym Sci B Polym Phys 40(12):1189–1200

    Article  CAS  Google Scholar 

  37. Inoue K, Hoshino S (1973) Crystal structure of nylon 12. J Polym Sci Polym Phys Ed 11(6):1077–1089

    CAS  Google Scholar 

  38. Schmid M, Amado A, Wegener K (2014) Materials perspective of polymers for additive manufacturing with selective laser sintering. J Mater Res 29(17):1824–1832

    Article  CAS  Google Scholar 

  39. Kruth JP, Vandenbroucke B, Van Vaerenbergh J, Mercelis P (2005) Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. Int Conf Polymers & Moulds Innovations

  40. Seepersad CC, Govett T, Kim K, Lundin M, Pinero D (2012) A designer’s guide for dimensioning and tolerancing SLS parts. Proceedings of the Solid Freeform Fabrication Symposium, pp 921–931

  41. Akande SO, Dalgarno KW, Munguia J, Pallari J (2016) Assessment of tests for use in process and quality control systems for selective laser sintering of polyamide powders. J Mater Process Technol 229:549–561

    Article  CAS  Google Scholar 

  42. Pavan M, Craeghs T, Verhelst R, Ducatteeuw O, Kruth J-P, Dewulf W (2016) CT-based quality control of laser sintering of polymers. Case Studies in Nondestructive Testing and Evaluation 6:62–68

    Article  Google Scholar 

  43. Schmid M, Kleijnen R, Vetterli M, Wegener K (2017) Influence of the origin of polyamide 12 powder on the laser sintering process and laser sintered parts. Appl Sci 7(5):462

    Article  CAS  Google Scholar 

  44. Jacobi E, Schuttenberg H, Schulz RC (1980) A new method for gel permeation chromatography of polyamides. Makromol. Chem., Rapid Commun 1(6):397–402

  45. Cureton LT, Napadensky E, Annunziato C, La Scala JJ (2017) The effect of furan molecular units on the glass transition and thermal degradation temperatures of polyamides. J Appl Polym Sci 134(46):45514

    Article  CAS  Google Scholar 

  46. ISO/ASTM 52921-13 (2013) Standard terminology for additive manufacturing-coordinate systems and test methodologies. ASTM International, West Conshohocken

    Google Scholar 

  47. Usher JS, Gornet TJ, Starr TL (2013) Weibull growth modeling of laser-sintered nylon 12. Rapid Prototyp J 19(4):300–306

    Article  Google Scholar 

  48. Tamari S (2004) Optimum design of the constant-volume gas pycnometer for determining the volume of solid particles. Meas Sci Technol 15(3):549–558

    Article  CAS  Google Scholar 

  49. Taylor MA, Garboczi EJ, Erdogan ST, Fowler DW (2006) Some properties of irregular 3-D particles. Powder Technol 162(1):1–15

    Article  CAS  Google Scholar 

  50. Van den Eynde M, Verbelen L, Van Puyvelde P (2015) Assessing polymer powder flow for the application of laser sintering. Powder Technol 286:151–155

    Article  CAS  Google Scholar 

  51. Scholten H, Christoph W (1997) Use of a nylon-12 for selective laser sintering. US6245281B1, Evonik Degussa GmbH, EOS GmbH Electro Optical Systems

  52. Meyer K-R, Hornung K-H, Feldmann R, Smigerski H-J (1979) Method for polytropically precipitating polyamide powder coating compositions where the polyamides have at least 10 aliphatically bound carbon atoms per carbonamide group. US4334056A, Huels AG

  53. Baumann F-E, Monsheimer S, Grebe M, Christoph W, Heinrich D, Renners H, Scholten H, Schiffer T, Muegge J, Chiovaro J (2002) Polyamide powder with long-lasting, consistently good flowability. US7211615B2, Evonik Degussa GmbH

  54. Dickens ED, Lee B-L, Taylor GA, Magistro AJ, Ng H, McAlea KP, Forderhase PF (1992) Sinterable semi-crystalline powder and near-fully dense article formed therewith. USRE39354E1, 3D Systems Inc.

  55. Zarringhalam H, Hopkinson N, Kamperman NF, de Vlieger JJ (2006) Effects of processing on microstructure and properties of SLS nylon 12. Mater Sci Eng A 435-436:172–180

    Article  CAS  Google Scholar 

  56. Garboczi EJ, Bullard JW (2013) Contact function, uniform-thickness shell volume, and convexity measure for 3D star-shaped random particles. Powder Technol 237:191–201

    Article  CAS  Google Scholar 

  57. Amado A (2016) Characterization and prediction of SLS processability of polymer powders with respect to powder flow and part warpage. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland

  58. Wudy K, Drummer D (2019) Aging effects of polyamide 12 in selective laser sintering: molecular weight distribution and thermal properties. Additive Manufacturing 25:1–9

    Article  CAS  Google Scholar 

  59. Dupin S, Lame O, Barrès C, Charmeau J-Y (2012) Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering. Eur Polym J 48(9):1611–1621

    Article  CAS  Google Scholar 

  60. Haworth B, Hopkinson N, Hitt D, Zhong X (2013) Shear viscosity measurements on polyamide-12 polymers for laser sintering. Rapid Prototyp J 19(1):28–36

    Article  Google Scholar 

  61. McAninch IM, Palmese GR, Lenhart JL, La Scala JJ (2015) DMA testing of epoxy resins: the importance of dimensions. Polym Eng Sci 55(12):2761–2774

    Article  CAS  Google Scholar 

  62. Launay A, Marco Y, Maitournam MH, Raoult I (2013) Modelling the influence of temperature and relative humidity on the time-dependent mechanical behaviour of a short glass fibre reinforced polyamide. Mech Mater 56:1–10

    Article  Google Scholar 

  63. Zarringhalam H, Majewski C, Hopkinson N (2009) Degree of particle melt in nylon-12 selective laser-sintered parts. Rapid Prototyp J 15(2):126–132

    Article  Google Scholar 

  64. Zhao M, Wudy K, Drummer D (2018) Crystallization kinetics of polyamide 12 during selective laser sintering. Polymers 10(2):168

    Article  CAS  Google Scholar 

  65. Paolucci F, Baeten D, Roozemond PC, Goderis B, Peters GWM (2018) Quantification of isothermal crystallization of polyamide 12: modelling of crystallization kinetics and phase composition. Polymer 155:187–198

    Article  CAS  Google Scholar 

  66. Kline DB, Wool RP (1988) Polymer welding relations investigated by a lap shear joint method. Polym Eng Sci 28(1):52–57

    Article  CAS  Google Scholar 

  67. Seppala JE, Hoon Han S, Hillgartner KE, Davis CS, Migler KB (2017) Weld formation during material extrusion additive manufacturing. Soft Matter 13(38):6761–6769

    Article  CAS  Google Scholar 

  68. Majewski C, Zarringhalam H, Hopkinson N (2008) Effect of the degree of particle melt on mechanical properties in selective laser-sintered nylon-12 parts. Proc Inst Mech Eng B J Eng Manuf 222:1055–1064

    Article  Google Scholar 

  69. Dencheva N, Nunes TG, Oliveira MJ, Denchev Z (2005) Crystalline structure of polyamide 12 as revealed by solid-state13C NMR and synchrotron WAXS and SAXS. J Polym Sci B Polym Phys 43(24):3720–3733

    Article  CAS  Google Scholar 

  70. Monobe K, Fujiwara Y (1967) A study on single crystals of nylon 12. Memoirs of the School of Engineering, Okayama University, 2(1):88–92

  71. Ishikawa T, Nagai S, Kasai N (1980) Effect of casting conditions on polymorphism of nylon-12. J Polym Sci Polym Phys Ed 18(2):291–299

    Article  CAS  Google Scholar 

  72. Ishikawa T, Nagai S, Kasai N (1981) The γ → α partial transformation in nylon 12 by drawing. Die Makromolekulare Chemie 182(3):977–988

    Article  CAS  Google Scholar 

  73. Nobuyasu H, Kazunao H, Susumu H (1983) Study of transformations among α, γ and γ' forms in nylon 12 by X-ray and DSC. Jpn J Appl Phys 22(2R):335

    Google Scholar 

  74. Li LB, Koch MHJ, de Jeu WH (2003) Crystalline structure and morphology in nylon-12: a small- and wide-angle X-ray scattering study. Macromolecules 36(5):1626–1632

    Article  CAS  Google Scholar 

  75. Ramesh C (1999) Crystalline transitions in nylon 12. Macromolecules 32(17):5704–5706

    Article  CAS  Google Scholar 

  76. Dadbakhsh S, Verbelen L, Verkinderen O, Strobbe D, Van Puyvelde P, Kruth J-P (2017) Effect of PA12 powder reuse on coalescence behaviour and microstructure of SLS parts. Eur Polym J 92:250–262

    Article  CAS  Google Scholar 

  77. Xu F, Yan C, Shyng Y-T, Chang H, Xia Y, Zhu Y (2014) Ultra-toughened nylon 12 nanocomposites reinforced with IF-WS 2. Nanotechnology 25(32):325701

    Article  CAS  Google Scholar 

  78. Jones NA, Atkins EDT, Hill MJ, Cooper SJ, Franco L (1996) Chain-folded lamellar crystals of aliphatic polyamides. Comparisons between nylons 4 4, 6 4, 8 4, 10 4, and 12 4. Macromolecules 29(18):6011–6018

    Article  CAS  Google Scholar 

  79. Wu J, Xu X, Zhao Z, Wang M, Zhang J (2018) Study in performance and morphology of polyamide 12 produced by selective laser sintering technology. Rapid Prototyp J 24(5):813–820

    Article  Google Scholar 

  80. Leigh DK (2012) A comparison of polyamide 11 mechanical properties between laser sintering and traditional molding. Proceedings of the Solid Freeform Fabrication Symposium:574–605

  81. Stichel T, Frick T, Laumer T, Tenner F, Hausotte T, Merklein M, Schmidt M (2017) A round robin study for selective laser sintering of polyamide 12: microstructural origin of the mechanical properties. Opt Laser Technol 89:31–40

    Article  CAS  Google Scholar 

  82. Osmanlic F, Wudy K, Laumer T, Schmidt M, Drummer D, Körner C (2018) Modeling of laser beam absorption in a polymer powder bed. Polymers 10(7):784

    Article  CAS  Google Scholar 

  83. Murray BR, Leen SB, Semprimoschnig COA, Brádaigh CMÓ (2016) Helium permeability of polymer materials as liners for composite overwrapped pressure vessels. J Appl Polym Sci 133(29)

  84. Hendra PJ, Maddams WF, Royaud IAM, Willis HA, Zichy V (1990) The application of Fourier transform Raman spectroscopy to the identification and characterization of polyamides—I. Single number nylons. Spectrochim Acta A: Mol Spectrosc 46(5):747–756

    Article  Google Scholar 

  85. Verbelen L, Dadbakhsh S, Van den Eynde M, Kruth J-P, Goderis B, Van Puyvelde P (2016) Characterization of polyamide powders for determination of laser sintering processability. Eur Polym J 75:163–174

    Article  CAS  Google Scholar 

  86. Brule B, Decraemer N (2014) Method for producing an object by melting a polymer powder in a powder sintering device. US20180001549A1, Arkema France

  87. Greiner S, Wudy K, Wörz A, Drummer D (2019) Thermographic investigation of laser-induced temperature fields in selective laser beam melting of polymers. Opt Laser Technol 109:569–576

    Article  CAS  Google Scholar 

  88. Craft G, Nussbaum J, Crane N, Harmon JP (2018) Impact of extended sintering times on mechanical properties in PA-12 parts produced by powderbed fusion processes. Addit Manuf 22:800–806

    Article  CAS  Google Scholar 

  89. Rüsenberg S, Schmidt L, Schmid H-J (2011) Mechanical and physical properties—a way to assess quality of laser sintered parts. Proceedings of the Solid Freeform Fabrication Symposium, pp 239–251

  90. Rouholamin D, Hopkinson N (2014) An investigation on the suitability of micro-computed tomography as a non-destructive technique to assess the morphology of laser sintered nylon 12 parts. Proc Inst Mech Eng B J Eng Manuf 228(12):1529–1542

    Article  Google Scholar 

  91. Dewulf W, Pavan M, Craeghs T, Kruth J-P (2016) Using X-ray computed tomography to improve the porosity level of polyamide-12 laser sintered parts. CIRP Ann 65(1):205–208

    Article  Google Scholar 

  92. Erdoğan ST, Garboczi EJ, Fowler DW (2007) Shape and size of microfine aggregates: X-ray microcomputed tomography vs. laser diffraction. Powder Technol 177(2):53–63

    Article  CAS  Google Scholar 

  93. Majewski C, Hopkinson N (2011) Effect of section thickness and build orientation on tensile properties and material characteristics of laser sintered nylon-12 parts. Rapid Prototyp J 17(3):176–180

    Article  Google Scholar 

  94. Starr TL, Gornet TJ, Usher JS (2011) The effect of process conditions on mechanical properties of laser-sintered nylon. Rapid Prototyp J 17(6):418–423

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Matt Bartucci, Daniel Cole, John La Scala, and Jian Yu for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erich D. Bain or Kalman B. Migler.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Official contribution of the National Institute of Standards and Technology; no subject to copyright in the United States

Electronic Supplementary Material

ESM 1

(DOCX 710 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bain, E.D., Garboczi, E.J., Seppala, J.E. et al. AMB2018-04: Benchmark Physical Property Measurements for Powder Bed Fusion Additive Manufacturing of Polyamide 12. Integr Mater Manuf Innov 8, 335–361 (2019). https://doi.org/10.1007/s40192-019-00146-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40192-019-00146-3

Keywords

Navigation