Advertisement

A Tool to Generate Grain-Resolved Open-Cell Metal Foam Models

  • Joseph C. TuckerEmail author
  • Ashley D. Spear
Thematic Section: 3D Materials Science
  • 41 Downloads
Part of the following topical collections:
  1. 3D Materials Science 2019

Abstract

The development and use cases of an open-source filter for DREAM.3D that instantiates synthetic, grain-resolved, open-cell metal foam volumes are presented. The new capability allows for both synthetic-grain overlay of X-ray computed tomography data as well as fully synthetic foam geometry and grains. For the latter, a novel technique using Euclidean distances instantiates the 3D open-cell foam morphology, enabling user control of pore size, strut cross-section shape, and strut thickness variability. By integrating this approach into the DREAM.3D architecture, the entire DREAM.3D suite of filters is immediately available; thus, enabling both user control and quantification of grain size, shape, and crystallographic orientation statistics (among other metrics) as well as meshing algorithms to enable subsequent numerical analysis.

Keywords

Metallic foam Cellular solid Porous metals Microstructure Simulation 

Notes

Funding Information

This material is based upon work supported by the National Science Foundation DMREF program under Grant No. CMMI-1629660.

Compliance with Ethical Standards

Conflict of Interest

On behalf of both authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Wadley HN (2002) Cellular metals manufacturing. Adv Eng Mater 4(10):726–733CrossRefGoogle Scholar
  2. 2.
    Evans AG, Hutchinson J, Ashby M (1998) Multifunctionality of cellular metal systems. Prog Mater Sci 43(3):171–221CrossRefGoogle Scholar
  3. 3.
    Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46(6):559–632CrossRefGoogle Scholar
  4. 4.
    Banhart J (2003) Aluminum foams: on the road to real applications. MRS Bull 28(04):290–295CrossRefGoogle Scholar
  5. 5.
    Zhao C-Y, Lu W, Tian Y (2010) Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol Energy 84(8):1402–1412CrossRefGoogle Scholar
  6. 6.
    Singh R, Lee P, Dashwood R, Lindley T (2010) Titanium foams for biomedical applications: a review. Mater Technol 25:127–136CrossRefGoogle Scholar
  7. 7.
    Murr LE, Gaytan SM, Medina F, Lopez H, Martinez E, Machado BI, Hernandez DH, Martinez L, Lopez MI, Wicker RB, Bracke J (2010) Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans R Soc Lond A 368(1917):1999–2032CrossRefGoogle Scholar
  8. 8.
    Murr LE, Gaytan SM, Martinez E, Medina F, Wicker RB (2012) Next generation orthopaedic implants by additive manufacturing using electron beam melting. Int J Biomater 2012:1–14.  https://doi.org/10.1155/2012/245727 CrossRefGoogle Scholar
  9. 9.
    Maire E, Fazekas A, Salvo L et al (2003) X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems. Compos Sci Technol 63(16):2431–2443.  https://doi.org/10.1016/S0266-3538(03)00276-8 CrossRefGoogle Scholar
  10. 10.
    Jang WY, Kyriakides S (2009) On the crushing of aluminum open-cell foams: part II analysis. Int J Solids Struct 46(3–4):635–650.  https://doi.org/10.1016/j.ijsolstr.2008.10.016 CrossRefGoogle Scholar
  11. 11.
    Krishnan S, Murthy JY, Garimella SV (2006) Direct simulation of transport in open-cell metal foam. ASME J Heat Transfer 128(8):793–799.  https://doi.org/10.1115/1.2227038 CrossRefGoogle Scholar
  12. 12.
    Wehinger GD, Heitmann H, Kraume M (2016) An artificial structure modeler for 3D CFD simulations of catalytic foams. Chem Eng J 284(1385–8947):543–556.  https://doi.org/10.1016/j.cej.2015.09.014 CrossRefGoogle Scholar
  13. 13.
    Das S, Sneijders S, Deen NG, Kuipers JAM (2018) Drag and heat transfer closures for realistic numerically generated random open-cell solid foams using an immersed boundary method. Chem Eng Sci 183(0009–2509):260–274.  https://doi.org/10.1016/j.ces.2018.03.022 CrossRefGoogle Scholar
  14. 14.
    Zafari M, Panjepour M, Emami MD, Meratian M (2015) Microtomography-based numerical simulation of fluid flow and heat transfer in open cell metal foams. Appl Therm Eng 80:347–354CrossRefGoogle Scholar
  15. 15.
    Della Torre A, Montenegro G, Tabor G, Wears M (2014) CFD characterization of flow regimes inside open cell foam substrates. Int J Heat Fluid Flow 50:72–82CrossRefGoogle Scholar
  16. 16.
    Bianchi E, Heidig T, Visconti CG, Groppi G, Freund H, Tronconi E (2013) Heat transfer properties of metal foam supports for structured catalysts: wall heat transfer coefficient. Catal Today 216:121–134CrossRefGoogle Scholar
  17. 17.
    Bianchi E, Heidig T, Visconti CG, Groppi G, Freund H, Tronconi E (2012) An appraisal of the heat transfer properties of metallic open-cell foams for strongly exo−/endo-thermic catalytic processes in tubular reactors. Chem Eng J 198:512–528CrossRefGoogle Scholar
  18. 18.
    Ranut P, Nobile E, Mancini L (2014) High resolution microtomography-based CFD simulation of flow and heat transfer in aluminum metal foams. Appl Therm Eng 69(1):230–240CrossRefGoogle Scholar
  19. 19.
    Iasiello M, Cunsolo S, Oliviero M, Harris WM, Bianco N, Chiu WK, Naso V (2014) Numerical analysis of heat transfer and pressure drop in metal foams for different morphological models. J Heat Transf 136(11):112601CrossRefGoogle Scholar
  20. 20.
    Bodla KK, Murthy JY, Garimella SV (2010) Microtomography-based simulation of transport through open-cell metal foams. Numer Heat Transf Part A: Appl 58(7):527–544CrossRefGoogle Scholar
  21. 21.
    Weaire D, Phelan R (1994) A counter-example to Kelvin’s conjecture on minimal surfaces. Philos Mag Lett 69(2):107–110CrossRefGoogle Scholar
  22. 22.
    Bock J, Jacobi AM (2013) Geometric classification of open-cell metal foams using X-ray micro-computed tomography. Mater Charact 75:35–43.  https://doi.org/10.1016/j.matchar.2012.10.001 CrossRefGoogle Scholar
  23. 23.
    Siegkas P, Tagarielli V, Petrinic N (2014) Modelling stochastic foam geometries for FE simulations using 3D Voronoi cells. Procedia Mater Sci 4:221–226.  https://doi.org/10.1016/j.mspro.2014.07.604 CrossRefGoogle Scholar
  24. 24.
    August A, Ettrich J, Rölle M, Schmid S, Berghoff M, Selzer M, Nestler B (2015) Prediction of heat conduction in open-cell foams via the diffuse interface representation of the phase-field method. Int J Heat Mass Transf 84:800–808CrossRefGoogle Scholar
  25. 25.
    Brakke KA (1992) The surface evolver. Exp Math 1(2):141–165CrossRefGoogle Scholar
  26. 26.
    Kopanidis A, Theodorakakos A, Gavaises E, Bouris D (2010) 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam. Int J Heat Mass Transf 53(11):2539–2550CrossRefGoogle Scholar
  27. 27.
    Buffel B, Desplentere F, Bracke K, Verpoest I (2014) Modelling open cell foams based on the Weaire–Phelan unit cell with a minimal surface energy approach. Int J Solids Struct 51(19–20):3461–3470CrossRefGoogle Scholar
  28. 28.
    Pabst W, Uhlířová T, Gregorová E, Wiegmann A (2018) Young’s modulus and thermal conductivity of closed-cell, open-cell and inverse ceramic foams–model-based predictions, cross-property predictions and numerical calculations. J Eur Ceram Soc 38(6):2570–2578.  https://doi.org/10.1016/j.jeurceramsoc.2018.01.019 CrossRefGoogle Scholar
  29. 29.
    Goussery V, Bienvenu Y, Forest S, Gourgues AF, Colin C, Bartout JD (2004) Grain size effects on the mechanical behavior of open-cell nickel foams. Adv Eng Mater 6(6):432–439.  https://doi.org/10.1002/adem.200405153 CrossRefGoogle Scholar
  30. 30.
    Plumb JC, Lind JF, Tucker JC, Kelley R, Spear AD (2018) Three-dimensional grain mapping of open-cell metallic foam by integrating synthetic data with experimental data from high-energy x-ray diffraction microscopy. Mater Charact 144:448–460.  https://doi.org/10.1016/j.matchar.2018.07.031 CrossRefGoogle Scholar
  31. 31.
    Groeber MA, Jackson MA (2014) DREAM.3D: a digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3(1):5.  https://doi.org/10.1186/2193-9772-3-5 CrossRefGoogle Scholar
  32. 32.
    Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties (2nd ed). Cambridge, United Kingdom: Cambridge University PressGoogle Scholar
  33. 33.
    Rowenhorst DJ, Kuang JP, Thornton K, Voorhees PW (2006) Three-dimensional analysis of particle coarsening in high volume fraction solid-liquid mixtures. Acta Mater 54(8):2027–2039.  https://doi.org/10.1016/j.actamat.2005.12.038 CrossRefGoogle Scholar
  34. 34.
    Tucker JC, Chan LH, Rohrer GS, Groeber MA, Rollett AD (2012) Tail departure of log-normal grain size distributions in synthetic three-dimensional microstructures. Metall Mater Trans A 43(8):2810–2822CrossRefGoogle Scholar
  35. 35.
    Allison J, Backman D, Christodoulou L (2006) Integrated computational materials engineering: a new paradigm for the global materials profession. JOM 58(11):25–27CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Exponent, IncMenlo ParkUSA
  2. 2.Department of Mechanical EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations