Advertisement

Non-destructive Characterization of Polycrystalline Materials in 3D by Laboratory Diffraction Contrast Tomography

  • Jette OddershedeEmail author
  • Jun Sun
  • Nicolas Gueninchault
  • Florian Bachmann
  • Hrishikesh Bale
  • Christian Holzner
  • Erik Lauridsen
Thematic Section: 3D Materials Science
  • 26 Downloads

Abstract

Laboratory diffraction contrast tomography (LabDCT) enables the user to reconstruct three-dimensional (3D) grain maps of polycrystalline materials. For each grain, the size, orientation, and 3D morphology including the number of faces can be derived. Since the technique is non-destructive, LabDCT opens up new possibilities for studies of microstructural evolution at the level of individual grains. The LabDCT setup is integrated on a commercial X-ray microscope, enabling correlation of the resulting grain map with complimentary information on, e.g., cracks, porosities, and inclusions. Here, the LabDCT principle is introduced, and recent materials science applications are presented. The first example on liquid metal embrittlement highlights the correlation of grain boundary properties and complimentary absorption information on grain boundary wetting. It is shown that the grain boundary energy determines whether wetting occurs or not. The second example is on grain growth. The grain statistics in this study, more than 1200 grains at two different time steps, were large enough to capture rare events such as abnormal grain growth and the annihilation of a grain with only three faces.

Keywords

LabDCT Non-destructive characterization Grain boundaries Microstructural evolution 

Notes

Acknowledgments

The authors would like to thank Yubin Zhang and Dorte Juul Jensen, DTU Mechanical Engineering, and Burton R. Patterson and Catherine A. Sahi, University of Florida, for providing samples and engaging in fruitful discussion during the process of the investigations documented in the present publication.

Funding Information

This work is partially funded by the Innovation Fund Denmark (IFD) under the project “Multimodal 4D Characterization of Materials in the Laboratory” (case number: 5190-00044B).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lauridsen EM, Schmidt S, Suter RM, Poulsen HF (2001) Tracking: a method for structural characterization of grains in powders or polycrystals. J Appl Crystallogr 34:744–750.  https://doi.org/10.1107/S0021889801014170 CrossRefGoogle Scholar
  2. 2.
    Poulsen HF, Nielsen SF, Lauridsen EM, Schmidt S, Suter RM, Lienert U, Margulies L, Lorentzen T, Juul Jensen D (2001) Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders. J Appl Crystallogr 34:751–756.  https://doi.org/10.1107/S0021889801014273 CrossRefGoogle Scholar
  3. 3.
    Ludwig W, Schmidt S, Lauridsen EM, Poulsen HF (2008) X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case. J Appl Crystallogr 41:302–309.  https://doi.org/10.1107/S0021889808001684 CrossRefGoogle Scholar
  4. 4.
    Ludwig W, Reischig P, King A, Herbig M, Lauridsen EM, Johnson G, Marrow TJ, Buffière JY (2009) Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis. Rev Sci Instrum 80:033905.  https://doi.org/10.1063/1.3100200 CrossRefGoogle Scholar
  5. 5.
    Li SF, Suter RM (2013) Adaptive reconstruction method for three- dimensional orientation imaging. J Appl Crystallogr 46:512–524.  https://doi.org/10.1107/S0021889813005268 CrossRefGoogle Scholar
  6. 6.
    King A, Reischig P, Adrien J, Peetermans S, Ludwig W (2014) Polychromatic diffraction contrast tomography. Mater Charact 97:1–10.  https://doi.org/10.1016/j.matchar.2014.07.026 CrossRefGoogle Scholar
  7. 7.
    McDonald SA, Reischig P, Holzner C et al (2015) Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy. Sci Rep 5:14665.  https://doi.org/10.1038/srep14665 CrossRefGoogle Scholar
  8. 8.
    Holzner C, Lavery L, Bale H, Merkle A, McDonald S, Withers P, Zhang Y, Jensen DJ, Kimura M, Lyckegaard A, Reischig P, Lauridsen EM (2016) Diffraction contrast tomography in the laboratory – applications and future directions. Micros Today 24:34–43.  https://doi.org/10.1017/S1551929516000584 CrossRefGoogle Scholar
  9. 9.
    McDonald SA, Holzner C, Lauridsen EM et al (2017) Microstructural evolution during sintering of copper particles studied by laboratory diffraction contrast tomography (LabDCT). Sci Rep 7(5251).  https://doi.org/10.1038/s41598-017-04742-1
  10. 10.
    Bachmann F, Bale H, Gueninchault N, et al (2019) 3D grain reconstruction from laboratory diffraction contrast tomography. J Appl Crystallogr in pressGoogle Scholar
  11. 11.
    Keinan R, Bale H, Gueninchault N, Lauridsen EM, Shahani AJ (2018) Integrated imaging in three dimensions: providing a new lens on grain boundaries, particles, and their correlations in polycrystalline silicon. Acta Mater 148:225–234.  https://doi.org/10.1016/j.actamat.2018.01.045 CrossRefGoogle Scholar
  12. 12.
    Guinier A, Tennevin J (1949) Sur deux variantes de la méthode de laue et leurs applications. Acta Crystallogr 2:133–138.  https://doi.org/10.1107/S0365110X49000370 CrossRefGoogle Scholar
  13. 13.
    Groeber MA, Jackson MA (2014) DREAM.3D: a digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3(5).  https://doi.org/10.1186/2193-9772-3-5
  14. 14.
    Rohrer GS, Saylor DM, El DB et al (2004) The distribution of internal interfaces in polycrystals. Z Met 95:197–214.  https://doi.org/10.3139/146.017934 CrossRefGoogle Scholar
  15. 15.
    Saylor DM, El Dasher BS, Rollett AD, Rohrer GS (2004) Distribution of grain boundaries in aluminum as a function of five macroscopic parameters. Acta Mater 52:3649–3655.  https://doi.org/10.1016/j.actamat.2004.04.018 CrossRefGoogle Scholar
  16. 16.
    Nicholas MG, Old CF (1979) Liquid metal embrittlement. J Mater Sci 14:1–18.  https://doi.org/10.1007/BF01028323 CrossRefGoogle Scholar
  17. 17.
    Nam H-S, Srolovitz DJ (2009) Effect of material properties on liquid metal embrittlement in the Al–Ga system. Acta Mater 57:1546–1553.  https://doi.org/10.1016/j.actamat.2008.11.041 CrossRefGoogle Scholar
  18. 18.
    Ludwig W, Nielsen SF, Poulsen HF, Bellet D (2001) Direct observation of grain boundary wetting by synchrotron radiation imaging techniques. Defect Diffus Forum 194:1319–1330.  https://doi.org/10.4028/www.scientific.net/DDF.194-199.1319 CrossRefGoogle Scholar
  19. 19.
    Kobayashi M, Toda H, Uesugi K, Ohgaki T, Kobayashi T, Takayama Y, Ahn BG (2006) Preferential penetration path of gallium into grain boundary in practical aluminium alloy. Philos Mag 86:4351–4366.  https://doi.org/10.1080/14786430600710933 CrossRefGoogle Scholar
  20. 20.
    Sun J, Zhang Y, Lyckegaard A, Bachmann F, Lauridsen EM, Juul Jensen D (2019) Grain boundary wetting correlated to the grain boundary properties: a laboratory-based multimodal X-ray tomography investigation. Scr Mater 163:77–81.  https://doi.org/10.1016/j.scriptamat.2019.01.007 CrossRefGoogle Scholar
  21. 21.
    Read WT, Shockley W (1950) Dislocation models of crystal grain boundaries. Phys Rev 78:275–289.  https://doi.org/10.1103/PhysRev.78.275 CrossRefGoogle Scholar
  22. 22.
    Brandon DG (1966) The structure of high-angle grain boundaries. Acta Metall 14:1479–1484.  https://doi.org/10.1016/0001-6160(66)90168-4 CrossRefGoogle Scholar
  23. 23.
    Olmsted DL (2009) A new class of metrics for the macroscopic crystallographic space of grain boundaries. Acta Mater 57:2793–2799.  https://doi.org/10.1016/j.actamat.2009.02.030 CrossRefGoogle Scholar
  24. 24.
    Olmsted DL, Foiles SM, Holm EA (2009) Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater 57:3694–3703.  https://doi.org/10.1016/j.actamat.2009.04.007 CrossRefGoogle Scholar
  25. 25.
    Rowenhorst DJ, Lewis AC, Spanos G (2010) Three-dimensional analysis of grain topology and interface curvature in a β-titanium alloy. Acta Mater 58:5511–5519.  https://doi.org/10.1016/j.actamat.2010.06.030 CrossRefGoogle Scholar
  26. 26.
    Wang H, Xue WH, Kang RM, Zhang YF, Liu GQ (2018) Topology characteristics of three-dimensional grains in polycrystalline materials. Sci China Technol Sci 55:263–268.  https://doi.org/10.1007/s11431-017-9303-8 Google Scholar
  27. 27.
    Schmidt S, Olsen UL, Poulsen HF, Sørensen HO, Lauridsen EM, Margulies L, Maurice C, Juul Jensen D (2008) Direct observation of 3-D grain growth in Al-0.1% Mn. Scr Mater 59:491–494.  https://doi.org/10.1016/j.scriptamat.2008.04.049 CrossRefGoogle Scholar
  28. 28.
    Lin B, Jin Y, Hefferan CM, Li SF, Lind J, Suter RM, Bernacki M, Bozzolo N, Rollett AD, Rohrer GS (2015) Observation of annealing twin nucleation at triple lines in nickel during grain growth. Acta Mater 99:63–68.  https://doi.org/10.1016/j.actamat.2015.07.041 CrossRefGoogle Scholar
  29. 29.
    Zhang J, Zhang Y, Ludwig W, Rowenhorst D, Voorhees PW, Poulsen HF (2018) Three-dimensional grain growth in pure iron. Part I. statistics on the grain level. Acta Mater 156:76–85.  https://doi.org/10.1016/j.actamat.2018.06.021 CrossRefGoogle Scholar
  30. 30.
    McKenna IM, Poulsen SO, Lauridsen EM et al (2014) Grain growth in four dimensions: a comparison between simulations and experiment. Acta Mater 78:125–134.  https://doi.org/10.1016/j.actamat.2014.06.028 CrossRefGoogle Scholar
  31. 31.
    Sun J, Lyckegaard A, Zhang YB, Catherine SA, Patterson BR, Bachmann F, Gueninchault N, Bale H, Holzner C, Lauridsen E, Juul Jensen D (2017) 4D study of grain growth in Armco iron using laboratory X-ray diffraction contrast tomography. IOP Conf Ser Mater Sci Eng 219:012039.  https://doi.org/10.1088/1757-899X/219/1/012039 CrossRefGoogle Scholar
  32. 32.
    Sun RC, Bauer CL (1970) Tilt boundary migration in NaCl bicrystals. Acta Metall 18:639–647.  https://doi.org/10.1016/0001-6160(70)90093-3 CrossRefGoogle Scholar
  33. 33.
    Viswanathan R, Bauer CL (1973) Kinetics of grain boundary migration in copper bicrystals with [001] rotation axes. Acta Metall 21:1099–1109.  https://doi.org/10.1016/0001-6160(73)90026-6 CrossRefGoogle Scholar
  34. 34.
    MacPherson RD, Srolovitz DJ (2007) The von Neumann relation generalized to coarsening of three-dimensional microstructures. Nature 446:1053–1055.  https://doi.org/10.1038/nature05745 CrossRefGoogle Scholar
  35. 35.
    Dake JM, Oddershede J, Henning OS et al (2016) Direct observation of grain rotations during coarsening of a semisolid Al–Cu alloy. PNAS PLUS 113:5998–6007.  https://doi.org/10.1073/pnas.1602293113

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Xnovo Technology ApSKøgeDenmark
  2. 2.Carl Zeiss X-ray Microscopy Inc.PleasantonUSA

Personalised recommendations