Advertisement

Accurate Prediction of Melt Pool Shapes in Laser Powder Bed Fusion by the Non-Linear Temperature Equation Including Phase Changes

Model validity: isotropic versus anisotropic conductivity to capture AM Benchmark Test AMB2018-02
  • Stefan KollmannsbergerEmail author
  • Massimo Carraturo
  • Alessandro Reali
  • Ferdinando Auricchio
Thematic Section: Additive Manufacturing Benchmarks 2018
  • 17 Downloads
Part of the following topical collections:
  1. Additive Manufacturing Benchmarks 2018

Abstract

In this contribution, we validate a physical model based on a transient temperature equation (including latent heat), w.r.t. the experimental set AMB2018-02 provided within the additive manufacturing benchmark series, established at the National Institute of Standards and Technology, USA. We aim at predicting the following quantities of interest, width, depth, and length of the melt pool by numerical simulation, and report also on the obtainable numerical results of the cooling rate. We first assume the laser to possess a double-ellipsoidal shape and demonstrate that a well-calibrated, purely thermal model based on isotropic thermal conductivity is able to predict all the quantities of interest, up to a deviation of maximum 7.3% from the experimentally measured values. However, it is interesting to observe that if we directly introduce, whenever available, the measured laser profile in the model (instead of the double-ellipsoidal shape), the investigated model returns a deviation of 19.3% from the experimental values. This motivates a model update by introducing anisotropic conductivity, which is intended to be a simplistic model for heat material convection inside the melt pool. Such an anisotropic model enables the prediction of all quantities of interest mentioned above with a maximum deviation from the experimental values of 6.5%. We note that, although more predictive, the anisotropic model induces only a marginal increase in computational complexity.

Keywords

Melt pool size Validation Model calibration Laser powder bed fusion Heat transfer analysis SLM Laser bed power fusion Metal additive manufacturing 

Notes

Funding Information

The first author received financial support from the German Research Foundation (DFG) under grant RA 624/27-2. This work was partially supported by Regione Lombardia through the project ”TPro.SL - Tech Profiles for Smart Living” (No. 379384) within the Smart Living program, and through the project ”MADE4LO - Metal ADditivE for LOmbardy” (No. 240963) within the POR FESR 2014-2020 program. Massimo Carraturo and Alessandro Reali have been partially supported by Fondazione Cariplo - Regione Lombardia through the project “Verso nuovi strumenti di simulazione super veloci ed accurati basati sull’analisi isogeometrica”, within the program RST - rafforzamento.

Supplementary material

40192_2019_132_MOESM1_ESM.pdf (117 kb)
(PDF 116 KB)

References

  1. 1.
    AM Bench benchmark challenge CHAL-AMB2018-02-MP. https://www.nist.gov/ambench/amb2018-02-description
  2. 2.
    Special metals corporation. http://www.specialmetals.com
  3. 3.
    Box G (1976) Science and Statistics. J Am Stat Assoc 71(356):791–799.  https://doi.org/10.2307/2286841 CrossRefGoogle Scholar
  4. 4.
    Celentano D, Oñate E, Oller S (1994) A temperature-based formulation for finite element analysis of generalized phase-change problems. Int J Numer Methods Eng 37(20):3441–3465CrossRefGoogle Scholar
  5. 5.
    Chiumenti M, Neiva E, Salsi E, Cervera M, Badia S, Moya J, Chen Z, Lee C, Davies C (2017) Numerical modelling and experimental validation in Selective Laser Melting. Addit Manuf 18:171–185.  https://doi.org/10.1016/j.addma.2017.09.002 CrossRefGoogle Scholar
  6. 6.
    D’Angella D, Kollmannsberger S, Rank E, Reali A (2018) Multi-level bézier extraction for hierarchical local refinement of Isogeometric Analysis. Comput Methods Appl Mech Eng 328:147–174.  https://doi.org/10.1016/j.cma.2017.08.017 CrossRefGoogle Scholar
  7. 7.
    Denlinger ER, Jagdale V, Srinivasan G, El-Wardany T, Michaleris P (2016) Thermal modeling of Inconel 718 processed with powder bed fusion and experimental validation using in situ measurements. Addit Manuf 11:7–15.  https://doi.org/10.1016/j.addma.2016.03.003.00005 CrossRefGoogle Scholar
  8. 8.
    Fotovvati B, Wayne SF, Lewis G, Asadi E (2018) A review on melt-pool characteristics in laser welding of metals. Adv Mater Sci Eng 2018:1–18.  https://doi.org/10.1155/2018/4920718 CrossRefGoogle Scholar
  9. 9.
    Ghosh S, Ma L, Levine LE, Ricker RE, Stoudt MR, Heigel JC, Guyer JE (2018) Single-track melt-pool measurements and microstructures in inconel 625. JOM 70:1011–1016.  https://doi.org/10.1007/s11837-018-2771-x CrossRefGoogle Scholar
  10. 10.
    Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15(2):299–305.  https://doi.org/10.1007/BF02667333 CrossRefGoogle Scholar
  11. 11.
    Goldak JA, Akhlaghi M (2005) Computational welding mechanics. Springer, New YorkGoogle Scholar
  12. 12.
    Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45.  https://doi.org/10.1016/j.actamat.2016.02.014 CrossRefGoogle Scholar
  13. 13.
    Kollmannsberger S, Özcan A, Carraturo M, Zander N, Rank E (2018) A hierarchical computational model for moving thermal loads and phase changes with applications to selective laser melting. Comput Math Appl 75(5):1483–1497.  https://doi.org/10.1016/j.camwa.2017.11.014 CrossRefGoogle Scholar
  14. 14.
    Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987.  https://doi.org/10.1016/j.jmatprotec.2010.12.016 CrossRefGoogle Scholar
  15. 15.
    Lindgren LE (2007) Computational welding mechanics: Thermomechanical and microstructural simulations. Woodhead Publishing Limited and CRC Press LLCGoogle Scholar
  16. 16.
    Lu X, Lin X, Chiumenti M, Cervera M, Li J, Ma L, Wei L, Hu Y, Huang W (2018) Finite element analysis and experimental validation of the thermomechanical behavior in laser solid forming of Ti-6Al-4V. Addit Manuf 21:30–40.  https://doi.org/10.1016/j.addma.2018.02.003 CrossRefGoogle Scholar
  17. 17.
    Mahmoudi M, Tapia G, Karayagiz K, Franco B, Ma J, Arroyave R, Karaman I, Elwany A (2018) Multivariate calibration and experimental validation of a 3D finite element thermal model for laser powder bed fusion metal additive manufacturing. Integr Mater Manuf Innov 7(3):116–135.  https://doi.org/10.1007/s40192-018-0113-z CrossRefGoogle Scholar
  18. 18.
    Megahed M, Mindt HW, N’Dri N, Duan H, Desmaison O (2016) Metal additive-manufacturing process and residual stress modeling. Integr Mater Manuf Innov 5(1).  https://doi.org/10.1186/s40192-016-0047-2
  19. 19.
    Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead, Cambridge. OCLC: ocm47677674CrossRefGoogle Scholar
  20. 20.
    Riedlbauer D, Scharowsky T, Singer RF, Steinmann P, Körner C, Mergheim J (2017) Macroscopic simulation and experimental measurement of melt pool characteristics in selective electron beam melting of Ti-6Al-4V. Int J Adv Manuf Technol 88(5-8):1309–1317.  https://doi.org/10.1007/s00170-016-8819-6 CrossRefGoogle Scholar
  21. 21.
    Schoinochoritis B, Chantzis D, Salonitis K (2017) Simulation of metallic powder bed additive manufacturing processes with the finite element method: A critical review. Proc Inst Mech Eng, Part B: J Eng Manuf 231(1):96–117.  https://doi.org/10.1177/0954405414567522 CrossRefGoogle Scholar
  22. 22.
    Smith J, Xiong W, Yan W, Lin S, Cheng P, Kafka OL, Wagner GJ, Cao J, Liu W (2016) Linking process, structure, property, and performance for metal-based additive manufacturing: Computational approaches with experimental support. Comput Mech 57(4):583–610.  https://doi.org/10.1007/s00466-015-1240-4 CrossRefGoogle Scholar
  23. 23.
    Svenungsson J, Choquet I, Kaplan AF (2015) Laser welding process – A review of keyhole welding modelling. Phys Procedia 78:182–191.  https://doi.org/10.1016/j.phpro.2015.11.042 CrossRefGoogle Scholar
  24. 24.
    Tanaka M (2004) An introduction to physical phenomena in arc welding processes. Weld Int 18(11):845–851.  https://doi.org/10.1533/wint.2004.3342 CrossRefGoogle Scholar
  25. 25.
    Yan Z, Liu W, Tang Z, Liu X, Zhang N, Li M, Zhang H (2018) Review on thermal analysis in laser-based additive manufacturing. Opt Laser Technol 106:427–441.  https://doi.org/10.1016/j.optlastec.2018.04.034 CrossRefGoogle Scholar
  26. 26.
    Zhang Z, Huang Y, Rani Kasinathan A, Imani Shahabad S, Ali U, Mahmoodkhani Y, Toyserkani E (2019) 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity. Opt Laser Technol 109:297–312.  https://doi.org/10.1016/j.optlastec.2018.08.012 CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Technical University of MunichMunichGermany
  2. 2.University of PaviaPaviaItaly

Personalised recommendations