Tailoring the Properties of a Ni-Based Superalloy via Modification of the Forging Process: an ICME Approach to Fatigue Performance

  • Martin Detrois
  • John Rotella
  • Mark Hardy
  • Sammy Tin
  • Michael D. Sangid
Technical Article
  • 88 Downloads

Abstract

Traditionally, material design and property modifications are usually associated with compositional changes. Yet, subtle changes in the manufacturing process parameters can also have a dramatic effect on the resulting material properties. In this work, an integrated computational materials engineering (ICME) framework is adopted to tailor the fatigue performance of a Ni-based superalloy, RR1000. An existing fatigue model is used to identify microstructural features that promote enhanced fatigue life, namely a uniform, fine grain size distribution, random orientation, a distinct grain boundary distribution (specifically high twin boundary density and limited low-angle grain boundaries). A deformation mechanism map and process models for grain boundary engineering of RR1000 are used to identify the optimal thermo-mechanical processing parameters to realize these desirable microstructural features. For validation, small-scale forgings of RR1000 were produced and heat-treated to attain fine grain and coarse grain microstructures that represent the conventionally processed and grain boundary engineered (GBE) conditions, respectively. For each of the four microstructural variants of RR1000, the twin density and grain size were characterized and were in agreement with the desired microstructural attributes. In order to validate the deformation mechanisms and fatigue behavior of the material, high-resolution digital image correlation was performed to generate strain maps relative to the microstructural features. The high density of twin boundaries was confirmed to inhibit the length of slip bands, which is directly attributed to extended fatigue life. Thus, this study demonstrated the successful role of models, both process and performance, in the design and manufacture of Ni-based superalloy disk forgings.

Keywords

Grain boundary engineering Σ3 Twin Fatigue Strain Modeling 

References

  1. 1.
    Reed RC (2006) The superalloys: fundamentals and applications. Cambridge University Press, New York. https://doi.org/10.1017/CBO9780511541285 CrossRefGoogle Scholar
  2. 2.
    Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propuls Power 22(2):361–374. https://doi.org/10.2514/1.18239 CrossRefGoogle Scholar
  3. 3.
    Sims CT, Stoloff NS, Hagel WC (1987) Superalloys II: high-temperature materials for aerospace and industrial power. Wiley, New YorkGoogle Scholar
  4. 4.
    Durand-Charre M (1998) The microstructure of Superalloys. CRC Press, Boca RatonGoogle Scholar
  5. 5.
    MacLachlan DW, Knowles DM (2001) Modelling and prediction of the stress rupture behaviour of single crystal superalloys. Mater Sci Eng A 302(2):275–285. https://doi.org/10.1016/S0921-5093(00)01829-3 CrossRefGoogle Scholar
  6. 6.
    Ghosh RN, Curtis RV, McLean M (1990) Creep deformation of single crystal superalloys-modelling of the crystallographic anisotropy. Acta Metall Mater 38(10):1977–1992. https://doi.org/10.1016/0956-7151(90)90309-5 CrossRefGoogle Scholar
  7. 7.
    Furrer D, Fecht H (1999) Ni-based superalloys for turbine discs. JOM 51(1):14–17. https://doi.org/10.1007/s11837-999-0005-y CrossRefGoogle Scholar
  8. 8.
    Hyde CJ, Sun W, Hyde TH (2011) An investigation of the failure mechanisms in high temperature materials subjected to isothermal and anisothermal fatigue and creep conditions. Procedia Eng 10:1157–1162. https://doi.org/10.1016/j.proeng.2011.04.192 CrossRefGoogle Scholar
  9. 9.
    Jones J, Whittaker M, Lancaster R, Williams S (2014) Lifing the thermo-mechanical fatigue (TMF) behaviour of the polycrystalline nickel-based superalloy RR1000. MATEC Web Conf 14:19001. https://doi.org/10.1051/matecconf/20141419001 CrossRefGoogle Scholar
  10. 10.
    Schuh CA, Kumar M, King WE (2003) Analysis of grain boundary networks and their evolution during grain boundary engineering. Acta Mater 51:687–700. https://doi.org/10.1016/S1359-6454(02)00447-0 CrossRefGoogle Scholar
  11. 11.
    Randle V (1996) The role of the coincidence site lattice in grain boundary engineering. The Institute of Materials, LondonGoogle Scholar
  12. 12.
    Kumar M, King WE, Schwartz AJ (2000) Modifications to the microstructural topology in fcc materials through thermomechanical processing. Acta Mater 48(9):2081–2091. https://doi.org/10.1016/S1359-6454(00)00045-8 CrossRefGoogle Scholar
  13. 13.
    Palumbo G, Aust KT (1992) Special properties of Σ grain boundaries. In: Wolf D, Yip S (eds) Materials interfaces: atomic-level structure and properties. Chapman & Hall, London, pp 190–207Google Scholar
  14. 14.
    Kronberg ML, Wilson FH (1949) Secondary recrystallization in copper. AIME TransGoogle Scholar
  15. 15.
    Olmsted DL (2009) A new class of metrics for the macroscopic crystallographic space of grain boundaries. Acta Mater 57:2793–2799. https://doi.org/10.1016/j.actamat.2009.02.030 CrossRefGoogle Scholar
  16. 16.
    Olmsted DL, Foiles SM, Holm EA (2009) Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater 57:3694–3703. https://doi.org/10.1016/j.actamat.2009.04.007 CrossRefGoogle Scholar
  17. 17.
    Randle V (1999) Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials. Acta Metall 47:4187–4196. https://doi.org/10.1016/S1359-6454(99)00277-3 Google Scholar
  18. 18.
    Lu K, Lu L, Suresh S (2009) Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324(5925):349–352. https://doi.org/10.1126/science.1159610 CrossRefGoogle Scholar
  19. 19.
    Gao Y, Ritchie RO, Kumar M, Nalla RK (2005) High-cycle fatigue of nickel-based superalloy ME3 at ambient and elevated temperatures: role of grain-boundary engineering. Metall Mater Trans A 36(12):3325–3333. https://doi.org/10.1007/s11661-005-0007-5 CrossRefGoogle Scholar
  20. 20.
    Gao Y, Stölken JS, Kumar M, Ritchie RO (2007) High-cycle fatigue of nickel-base superalloy René 104 (ME3): interaction of microstructurally small cracks with grain boundaries of known character. Acta Mater 55(9):3155–3167. https://doi.org/10.1016/j.actamat.2007.01.033 CrossRefGoogle Scholar
  21. 21.
    Sangid MD, Maier HJ, Sehitoglu H (2011) The role of grain boundaries on fatigue crack initiation–an energy approach. Int J Plast 27(5):801–821. https://doi.org/10.1016/j.ijplas.2010.09.009 CrossRefGoogle Scholar
  22. 22.
    Boettner RC, McEvily AJ Jr, Liu YC (1964) On the formation of fatigue cracks at twin boundaries. Philos Mag 10(103):95–106. https://doi.org/10.1080/14786436408224210 CrossRefGoogle Scholar
  23. 23.
    Thompson A (1972) The influence of grain and tlin boundaries in fatigue cracking. Acta Metall 20(9):1085–1094. https://doi.org/10.1016/0001-6160(72)90172-1 CrossRefGoogle Scholar
  24. 24.
    Qu S, Zhang P, Wu SD, Zang QS, Zhang ZF (2008) Twin boundaries: strong or weak? Scr Mater 59(10):1131–1134. https://doi.org/10.1016/j.scriptamat.2008.07.037 CrossRefGoogle Scholar
  25. 25.
    Abuzaid W, Sehitoglu H, Lambros J (2013) Plastic strain localization and fatigue micro-crack formation in Hastelloy X. Mater Sci Eng A 561:507–519. https://doi.org/10.1016/j.msea.2012.10.072 CrossRefGoogle Scholar
  26. 26.
    Blochwitz C, Tirschler W (2005) Twin boundaries as crack nucleation sites. Cryst Res Technol 40(1–2):32–41. https://doi.org/10.1002/crat.200410305 CrossRefGoogle Scholar
  27. 27.
    Hashimoto S, Ikehata H, Kato A, Kato H, Kaneko Y (1999) Fatigue crack nucleation at Σ3 (1 1 2) boundary in a ferritic stainless steel. Interface Sci 7(2):159–171. https://doi.org/10.1023/A:1008739820261 CrossRefGoogle Scholar
  28. 28.
    Miao J, Pollock TM, Jones JW (2009) Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature. Acta Mater 57(20):5964–5974. https://doi.org/10.1016/j.actamat.2009.08.022 CrossRefGoogle Scholar
  29. 29.
    Stinville JC, Vanderesse N, Bridier F, Bocher P, Pollock TM (2015) High resolution mapping of strain localization near twin boundaries in a nickel-based superalloy. Acta Mater 98:29–42. https://doi.org/10.1016/j.actamat.2015.07.016 CrossRefGoogle Scholar
  30. 30.
    Alam Z, Eastman D, Weber G, Ghosh S, Hemker K (2016) Microstructural aspects of fatigue crack initiation and short crack growth in René 88DT. In: Hardy M, Huron E, Glatzel U, Griffin B, Lewis B, Rae C, Seetharaman V, Tin S (eds) Superalloys 2016: proceedings of the 13th international symposium of Superalloys. Wiley, Hoboken, pp 561–568. https://doi.org/10.1002/9781119075646.ch60 CrossRefGoogle Scholar
  31. 31.
    Peralta P, Llanes L, Bassani J, Laird C (1994) Deformation from twin-boundary stresses and the role of texture: application to fatigue. Philos Mag A 70(1):219–232. https://doi.org/10.1080/01418619408242547 CrossRefGoogle Scholar
  32. 32.
    Neumann P (1999) Analytical solution for the incompatibility stresses at twin boundaries in cubic crystals. In: Wu XR (ed) Proceedings of the 7th International Fatigue Conference (FATIGUE’99). 1:4Google Scholar
  33. 33.
    Shenoy M, Tjiptowidjojo Y, McDowell D (2008) Microstructure-sensitive modeling of polycrystalline IN 100. Int J Plast 24:1694–1730. https://doi.org/10.1016/j.ijplas.2008.01.001 CrossRefGoogle Scholar
  34. 34.
    Przybyla CP, McDowell DL (2010) Microstructure-sensitive extreme value probabilities for high cycle fatigue of Ni-base superalloy IN100. Int J Plast 26:372–394. https://doi.org/10.1016/j.ijplas.2009.08.001 CrossRefGoogle Scholar
  35. 35.
    Castelluccio GM, McDowell DL (2013) Effect of annealing twins on crack initiation under high cycle fatigue conditions. J Mater Sci 48(6):2376–2387. https://doi.org/10.1007/s10853-012-7021-y CrossRefGoogle Scholar
  36. 36.
    Keshavarz S, Ghosh S (2015) Hierarchical crystal plasticity FE model for nickel-based superalloys: sub-grain microstructures to polycrystalline aggregates. Int J Solids Struct 55:17–31. https://doi.org/10.1016/j.ijsolstr.2014.03.037 CrossRefGoogle Scholar
  37. 37.
    Zhang T, Jiang J, Britton B, Shollock B, Dunne F (2015) Crack nucleation using combined crystal plasticity modelling, high-resolution digital image correlation and high-resolution electron backscatter diffraction in a superalloy containing non-metallic inclusions under fatigue. Proc R Soc A 472:0792. https://doi.org/10.1098/rspa.2015.0792 Google Scholar
  38. 38.
    Wan VVC, MacLachlan DW, Dunne FPE (2014) A stored energy criterion for fatigue crack nucleation in polycrystals. Int J Fatigue 68:90–102. https://doi.org/10.1016/j.ijfatigue.2014.06.001 CrossRefGoogle Scholar
  39. 39.
    Cerrone A, Stein C, Pokharel R, Hefferan C, Lind J, Tucker H, Suter R, Rollett A, Ingraffea A (2015) Implementation and verification of a microstructure-based capability for modeling microcrack nucleation in LSHR at room temperature. Model Simul Mater Sci Eng 23(3):035006. https://doi.org/10.1088/0965-0393/23/3/035006 CrossRefGoogle Scholar
  40. 40.
    Yeratapally SR, Glavicic MG, Hardy M, Sangid MD (2016) Microstructure based fatigue life prediction framework for polycrystalline nickel-base superalloys with emphasis on the role played by twin boundaries in crack initiation. Acta Mater 107:152–167. https://doi.org/10.1016/j.actamat.2016.01.038 CrossRefGoogle Scholar
  41. 41.
    Tanaka K, Mura T (1981) A dislocation model for fatigue crack initiation. J Appl Mech 48:97–103. https://doi.org/10.1115/1.3157599 CrossRefGoogle Scholar
  42. 42.
    Sangid MD, Maier HJ, Sehitoglu H (2011) A physically based fatigue model for prediction of crack initiation from persistent slip bands in polycrystals. Acta Mater 59:328–341. https://doi.org/10.1016/j.actamat.2010.09.036 CrossRefGoogle Scholar
  43. 43.
    Sangid MD, Maier HJ, Sehitoglu H (2011) An energy-based microstructure model to account for fatigue scatter in polycrystals. J Mech Phys Solids 59:595–609. https://doi.org/10.1016/j.jmps.2010.12.014 CrossRefGoogle Scholar
  44. 44.
    Armstrong PJ, Frederick CO (1966) A mathematical representation of the multiaxial Bauschinger effect. Report RD/B/N, 731, Central Electricity Generating Board, Berkeley, UKGoogle Scholar
  45. 45.
    Schouwenaars R, Seefeldt M, Van Houtte P (2010) The stress field of an array of parallel dislocation pile-ups: implications for grain boundary hardening and excess dislocation distributions. Acta Mater 58:4344–4353. https://doi.org/10.1016/j.actamat.2010.04.026 CrossRefGoogle Scholar
  46. 46.
    Taylor GI (1934) The mechanism of plastic deformation of crystals. Proc Roy Soc 145:362–387. https://doi.org/10.1098/rspa.1934.0106 CrossRefGoogle Scholar
  47. 47.
    Sangid MD, Ezaz T, Sehitoglu H, Robertson IM (2011) Energy of slip transmission and nucleation at grain boundaries. Acta Mater 59:283–296. https://doi.org/10.1016/j.actamat.2010.09.032 CrossRefGoogle Scholar
  48. 48.
    Essmann U, Gosele U, Mughrabi H (1981) A model of extrusions and intrusions in fatigued metals. I. Point-defect production and the growth of extrusions. Philos Mag A 44:405–426. https://doi.org/10.1080/01418618108239541 CrossRefGoogle Scholar
  49. 49.
    Differt K, Essmann U, Mughrabi H (1986) A model of extrusions and intrusions in fatigued metals. II. Surface roughening by random irreversible slip. Philos Mag A 54:237–258. https://doi.org/10.1080/01418618608242897 CrossRefGoogle Scholar
  50. 50.
    Stroh AN (1957) A theory of the fracture of metals. Adv Phys 6:418–465. https://doi.org/10.1080/00018735700101406 CrossRefGoogle Scholar
  51. 51.
    Zhang ZF, Wang ZG (2003) Dependence of intergranular fatigue cracking on the interactions of persistent slip bands with grain boundaries. Acta Mater 51:347–364. https://doi.org/10.1016/S1359-6454(02)00399-3 CrossRefGoogle Scholar
  52. 52.
    Davidson DL, Tryon RG, Oja M, Matthews R, Ravi Chandran KS (2007) Fatigue crack initiation in WASPALOY at 20 °C. Metall Mater Trans A 38A:2214–2225. https://doi.org/10.1007/s11661-007-9178-6 CrossRefGoogle Scholar
  53. 53.
    Yeratapally SR, Glavicic MG, Argyrakis C, Sangid MD (2017) Bayesian uncertainty quantification and propagation for validation of a microstructure sensitive model for prediction of fatigue crack initiation. Reliab Eng Syst Saf 164:110–123. https://doi.org/10.1016/j.ress.2017.03.006 CrossRefGoogle Scholar
  54. 54.
    Sangid MD, Sehitoglu H, Maier HJ, Niendorf T (2010) Grain boundary characterization and energetics of superalloys. Mater Sci Eng A 527:7115–7125. https://doi.org/10.1016/j.msea.2010.07.062 CrossRefGoogle Scholar
  55. 55.
    Palumbo G, Lehockey EM, Lin P (1998) Applications for grain boundary engineered materials. JOM 50:40–43. https://doi.org/10.1007/s11837-998-0248-z CrossRefGoogle Scholar
  56. 56.
    Watanabe T (1984) An approach to grain boundary design for strong and ductile polycrystals. Res Mechanica 11(1):47–84Google Scholar
  57. 57.
    Randle V (2004) Twinning-related grain boundary engineering. Acta Mater 52:4067–4081. https://doi.org/10.1016/j.actamat.2004.05.031 CrossRefGoogle Scholar
  58. 58.
    Detrois M, Rotella J, Goetz RL, Helmink RC, Tin S (2015) Grain boundary engineering of powder processed Ni-base superalloy RR1000: influence of the deformation parameters. Mater Sci Eng A 627:95–105. https://doi.org/10.1016/j.msea.2014.12.112 CrossRefGoogle Scholar
  59. 59.
    Detrois M, Goetz RL, Helmink RC, Tin S (2015) Modeling the effect of thermal-mechanical processing parameters on the density and length fraction of twin boundaries in Ni-base superalloy RR1000. Mater Sci Eng A 647:157–162. https://doi.org/10.1016/j.msea.2015.09.022 CrossRefGoogle Scholar
  60. 60.
    Detrois M, Goetz RL, Helmink RC, Tin S (2016) The role of texturing and recrystallization during grain boundary engineering of Ni-based superalloy RR1000. J Mater Sci 51(11):5122–5138. https://doi.org/10.1007/s10853-016-9815-9 CrossRefGoogle Scholar
  61. 61.
    Detrois M, McCarley J, Antonov S, Helmink RC, Goetz RL, Tin S (2016) Comparative study of high-temperature grain boundary engineering of two powder-processed low stacking-fault energy Ni-base superalloys. Mater High Temp 33:310–317. https://doi.org/10.1080/09603409.2016.1155689 CrossRefGoogle Scholar
  62. 62.
    Detrois M, Rotella R, Goetz RL, Helmink RC, Tin S (2016) The influence of the starting grain size during high-temperature grain boundary engineering of Ni-Base Superalloy RR1000. In: Hardy M, Huron E, Glatzel U, Griffin B, Lewis B, Rae C, Seetharaman V, Tin S (eds) Superalloys 2016: proceedings of the 13th international symposium of Superalloys. Wiley, Hoboken, pp 459–468. https://doi.org/10.1002/9781119075646.ch49 Google Scholar
  63. 63.
    Pande CS, Imam MA, Rath BB (1990) Study of annealing twins in FCC metals and alloys. Metall Mater Trans A 21:2891–2896. https://doi.org/10.1007/BF02647209 CrossRefGoogle Scholar
  64. 64.
    Li Q, Cahoon JR, Richards NL (2009) Effects of thermo-mechanical processing parameters on the special boundary configurations of commercially pure nickel. Mater Sci Eng A 527:263–271. https://doi.org/10.1016/j.msea.2009.07.064 CrossRefGoogle Scholar
  65. 65.
    Cahoon JR, Li Q, Richards NL (2009) Microstructural and processing factors influencing the formation of annealing twins. Mater Sci Eng A 526:56–61. https://doi.org/10.1016/j.msea.2009.07.021 CrossRefGoogle Scholar
  66. 66.
    Collins DM, Conduit BD, Stone HJ, Hardy MC, Conduit GJ, Mitchell RJ (2013) Grain growth behaviour during near-γ′ solvus thermal exposures in a polycrystalline nickel-base superalloy. Acta Mater 61:3378–3391. https://doi.org/10.1016/j.actamat.2013.02.028 CrossRefGoogle Scholar
  67. 67.
    Groeber MA, Jackson MA (2014) DREAM.3D: a digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3:1–17. https://doi.org/10.1186/2193-9772-3-5 CrossRefGoogle Scholar
  68. 68.
    Mello AW, Nicolas A, Sangid MD (2017) Fatigue strain mapping via digital image correlation for Ni-based superalloys: the role of thermal activation on cube slip. Mater Sci Eng A 695:332–341. https://doi.org/10.1016/j.msea.2017.04.002 CrossRefGoogle Scholar
  69. 69.
    Abuzaid WZ, Sangid MD, Carroll JD et al (2012) Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X. J Mech Phys Solids 60:1201–1220. https://doi.org/10.1016/j.jmps.2012.02.001 CrossRefGoogle Scholar
  70. 70.
    Chu TC, Ranson WF, Sutton MA, Peters WH (1985) Applications of digital image correlation techniques to experimental mechanics. Exp Mech 25:232–244. https://doi.org/10.1007/BF02325092 CrossRefGoogle Scholar
  71. 71.
    Kammers AD, Daly S (2013) Self-assembled nanoparticle surface patterning for improved digital image correlation in a scanning electron microscope. Exp Mech 53:1333–1341. https://doi.org/10.1007/s11340-013-9734-5 CrossRefGoogle Scholar
  72. 72.
    Sutton MA, Li N, Garcia D et al (2006) Metrology in a scanning electron microscope: theoretical developments and experimental validation. Meas Sci Technol 17:2613. https://doi.org/10.1088/0957-0233/17/10/012 CrossRefGoogle Scholar
  73. 73.
    Mello A, Book T, Nicolas A et al (2017) Distortion correction protocol for digital image correlation within a scan electron microscope: emphasis on long duration and ex-situ experiments. Exp. Mech 57:1395–1409. https://doi.org/10.1007/s11340-017-0303-1
  74. 74.
    Stoltz RE, Pineau AG, Materiaux C (1978) Dislocation-precipitate interaction. 34:275–284Google Scholar
  75. 75.
    Ho HS, Risbet M, Feaugas X (2015) On the unified view of the contribution of plastic strain to cyclic crack initiation: impact of the progressive transformation of shear bands to persistent slip bands. Acta Mater 85:155–167. https://doi.org/10.1016/j.actamat.2014.11.020 CrossRefGoogle Scholar
  76. 76.
    Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc Sect B 64:747–753. https://doi.org/10.1088/0370-1301/64/9/303 CrossRefGoogle Scholar
  77. 77.
    Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174Google Scholar
  78. 78.
    Kocks UF (1970) The relation between polycrystal deformation and single-crystal deformation. Metall Mater Trans 1:1121–1143. https://doi.org/10.1007/BF02900224 CrossRefGoogle Scholar
  79. 79.
    Mecking H (1981) Deformation of polycrystals: mechanisms and microstuctures. p 73Google Scholar
  80. 80.
    Shyam A, Milligan WW (2004) Effects of deformation behavior on fatigue fracture surface morphology in a nickel-base superalloy. Acta Mater 52:1503–1513. https://doi.org/10.1016/j.actamat.2003.11.032 CrossRefGoogle Scholar
  81. 81.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089 CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.ORISE, National Energy Technology LaboratoryAlbanyUSA
  2. 2.School of Materials EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Rolls-Royce plcDerbyUK
  4. 4.Illinois Institute of TechnologyChicagoUSA
  5. 5.School of Aeronautics and AstronauticsPurdue UniversityWest LafayetteUSA

Personalised recommendations