A Computational Framework for Material Design

  • Shengyen Li
  • Ursula R. Kattner
  • Carelyn E. Campbell
Technical Article


A computational framework is proposed that enables the integration of experimental and computational data, a variety of user-selected models, and a computer algorithm to direct a design optimization. To demonstrate this framework, a sample design of a ternary Ni-Al-Cr alloy with a high work-to-necking ratio is presented. This design example illustrates how CALPHAD phase-based, composition and temperature-dependent phase equilibria calculations and precipitation models are coupled with models for elastic and plastic deformation to calculate the stress-strain curves. A genetic algorithm then directs the search within a specific set of composition and processing constraints for the ideal composition and processing profile to optimize the mechanical properties. The initial demonstration of the framework provides a potential solution to initiate the material design process in a large space of composition and processing conditions. This framework can also be used in similar material systems or adapted for other material classes.


Ni-based superalloy Integrated computational materials engineering Genetic algorithm Material design 


  1. 1.
    Ågren J (2015) Nucleation-a challenge in the modelling of phase transformations. In: International conference on solid-solid phase transformations in inorganic materials 2015, PTM 2015, Canada, pp 9–14Google Scholar
  2. 2.
    Ahmadi M, Povoden-Karadeniz E, Whitmore L, Stockinger M, Falahati A, Kozeschnik E (2014) Yield strength prediction in Ni-base alloy 718plus based on thermo-kinetic precipitation simulation. Mater Sci Eng A 608:114–122CrossRefGoogle Scholar
  3. 3.
    Ai C, Zhao X, Zhou J, Zhang H, Liu L, Pei Y, Li S, Gong S (2015) Application of a modified ostwald ripening theory in coarsening of γ phases in ni based single crystal superalloys. J Alloys Compd 632:558–562CrossRefGoogle Scholar
  4. 4.
    Andersson JO, Helander T, Höglund L, Shi P, Sundman B (2002) Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26(2):273–312CrossRefGoogle Scholar
  5. 5.
    Bonvalet M, Philippe T, Sauvage X, Blavette D (2015) Modeling of precipitation kinetics in multicomponent systems: application to model superalloys. Acta Mater 100:169–177CrossRefGoogle Scholar
  6. 6.
    Booth-Morrison C, Weninger J, Sudbrack CK, Mao Z, Noebe RD, Seidman DN (2008) Effects of solute concentrations on kinetic pathways in Ni–Al–Cr alloys. Acta Mater 56(14):3422–3438CrossRefGoogle Scholar
  7. 7.
    Booth-Morrison C, Zhou Y, Noebe RD, Seidman DN (2010) On the nanometer scale phase separation of a low-supersaturation Ni–Al–Cr alloy. Phil Mag 90(1-4):219–235CrossRefGoogle Scholar
  8. 8.
    Bouaziz O, Estrin Y, Brechet Y, Embury J (2010) Critical grain size for dislocation storage and consequences for strain hardening of nanocrystalline materials. Scr Mater 63(5):477–479CrossRefGoogle Scholar
  9. 9.
    Breidi A, Fries S, Palumbo M, Ruban A (2016) First-principles modeling of energetic and mechanical properties of Ni–Cr, Ni–Re and Cr–Re random alloys. Comput Mater Sci 117:45–53CrossRefGoogle Scholar
  10. 10.
    Campbell C, Boettinger W, Hansen T, Merewether P, Mueller B (2005) Examination of multicomponent diffusion between two Ni-base superalloys. In: Complex inorganic solids. Springer, pp 241–249Google Scholar
  11. 11.
    Campbell C, Boettinger W, Kattner U (2002) Development of a diffusion mobility database for Ni-base superalloys. Acta Mater 50(4):775–792CrossRefGoogle Scholar
  12. 12.
    Cao W, Chen SL, Zhang F, Wu K, Yang Y, Chang Y, Schmid-Fetzer R, Oates W (2009) Pandat software with panengine, panoptimizer and panprecipitation for multi-component phase diagram calculation and materials property simulation. Calphad 33(2):328–342CrossRefGoogle Scholar
  13. 13.
    Chakraborti N (2004) Genetic algorithms in materials design and processing. Int Mater Rev 49(3-4):246–260CrossRefGoogle Scholar
  14. 14.
    Chen Q, Jeppsson J, AAgren J (2008) Analytical treatment of diffusion during precipitate growth in multicomponent systems. Acta materialia 56(8):1890–1896CrossRefGoogle Scholar
  15. 15.
    Chen XM, Lin Y, Chen MS, Li HB, Wen DX, Zhang JL, He M (2015) Microstructural evolution of a nickel-based superalloy during hot deformation. Mater Des 77:41–49CrossRefGoogle Scholar
  16. 16.
    Choi Y, Parthasarathy T, Dimiduk D, Uchic M (2005) Numerical study of the flow responses and the geometric constraint effects in Ni-base two-phase single crystals using strain gradient plasticity. Mater Sci Eng A 397(1):69–83CrossRefGoogle Scholar
  17. 17.
    Cimrman R (2014) Sfepy - write your own FE application. In: de Buyl P, Varoquaux N (eds) Proceedings of the 6th european conference on python in science (EuroSciPy 2013). arXiv:1404.6391, pp 65–70
  18. 18.
    Coello Coello CA, Toscano Pulido G (2001) A micro-genetic algorithm for multiobjective optimization. In: Evolutionary multi-criterion optimization. Springer, pp 126–140Google Scholar
  19. 19.
    Collins D, Stone H (2014) A modelling approach to yield strength optimisation in a nickel-base superalloy. Int J Plast 54:96–112CrossRefGoogle Scholar
  20. 20.
    Crudden D, Mottura A, Warnken N, Raeisinia B, Reed R (2014) Modelling of the influence of alloy composition on flow stress in high-strength nickel-based superalloys. Acta Mater 75:356–370CrossRefGoogle Scholar
  21. 21.
    Crudden DJ, Raeisinia B, Warnken N, Reed RC (2013) Analysis of the chemistry of Ni-base turbine disk superalloys using an alloys-by-design modeling approach. Metall Mater Trans A 44(5):2418–2430CrossRefGoogle Scholar
  22. 22.
    Cui C, Gu Y, Ping D, Harada H (2009) Microstructural evolution and mechanical properties of a Ni-based superalloy, tmw-4. Metall Mater Trans A 40(2):282–291CrossRefGoogle Scholar
  23. 23.
    Dima A, Bhaskarla S, Becker C, Brady M, Campbell C, Dessauw P, Hanisch R, Kattner U, Kroenlein K, Newrock M, et al (2016) Informatics infrastructure for the materials genome initiative. JOM 68(8):2053–2064CrossRefGoogle Scholar
  24. 24.
    Du Q, Poole W, Wells M (2012) A mathematical model coupled to calphad to predict precipitation kinetics for multicomponent aluminum alloys. Acta Mater 60(9):3830–3839CrossRefGoogle Scholar
  25. 25.
    Dupin N, Sundman B (2001) A thermodynamic database for Ni-base superalloys. Scand J Metall 30 (3):184–192CrossRefGoogle Scholar
  26. 26.
    Estrin Y (2007) Constitutive modelling of creep of metallic materials: some simple recipes. Mater Sci Eng A 463(1):171–176CrossRefGoogle Scholar
  27. 27.
    Estrin Y, Mecking H (1984) A unified phenomenological description of work hardening and creep based on one-parameter models. Acta Metall 32(1):57–70CrossRefGoogle Scholar
  28. 28.
    Fast T, Kalidindi SR (2011) Formulation and calibration of higher-order elastic localization relationships using the MKS approach. Acta Mater 59(11):4595–4605CrossRefGoogle Scholar
  29. 29.
    Fast T, Niezgoda SR, Kalidindi SR (2011) A new framework for computationally efficient structure–structure evolution linkages to facilitate high-fidelity scale bridging in multi-scale materials models. Acta Mater 59(2):699–707CrossRefGoogle Scholar
  30. 30.
    Fisher E (1986) On the elastic moduli of nickel rich Ni–Al alloy single crystals. Scr Metall 20(2):279–284CrossRefGoogle Scholar
  31. 31.
    Froemming NS, Henkelman G (2009) Optimizing core-shell nanoparticle catalysts with a genetic algorithm. J Chem Phys 131(23):234,103CrossRefGoogle Scholar
  32. 32.
    Fromm BS, Chang K, McDowell DL, Chen LQ, Garmestani H (2012) Linking phase-field and finite-element modeling for process–structure–property relations of a Ni-base superalloy. Acta Mater 60(17):5984–5999CrossRefGoogle Scholar
  33. 33.
    Frost HJ, Ashby MF (1982) Deformation mechanism maps: the plasticity and creep of metals and ceramics. OxfordGoogle Scholar
  34. 34.
    Gheribi A, Audet C, Le Digabel S, Bélisle E, Bale C, Pelton A (2012) Calculating optimal conditions for alloy and process design using thermodynamic and property databases, the factsage software and the mesh adaptive direct search algorithm. Calphad 36:135–143CrossRefGoogle Scholar
  35. 35.
    Goldberg D (1989) Genetic algorithms in search, optimization, and machine learning. Addison-WesleyGoogle Scholar
  36. 36.
    Gopinath K, Gogia A, Kamat S, Balamuralikrishnan R, Ramamurty U (2008) Tensile properties of Ni-based superalloy 720li: temperature and strain rate effects. Metall Mater Trans A 39(10):2340–2350CrossRefGoogle Scholar
  37. 37.
    Hertelé S, De Waele W, Denys R (2011) A generic stress–strain model for metallic materials with two-stage strain hardening behaviour. Int J Non Linear Mech 46(3):519–531CrossRefGoogle Scholar
  38. 38.
    Huang M, Rivera-Díaz-del-Castillo P, Bouaziz O, van der Zwaag S (2008) Irreversible thermodynamics modelling of plastic deformation of metals. Mater Sci Technol 24(4):495–500CrossRefGoogle Scholar
  39. 39.
    Huang M, Rivera-Díaz-del-Castillo P, Van Der Zwaag S (2007) Modelling steady state deformation of fcc metals by non-equilibrium thermodynamics. Mater Sci Technol 23(9):1105–1108CrossRefGoogle Scholar
  40. 40.
    Ikeda Y (1997) A new method of alloy design using a genetic algorithm. Mater Trans JIM 38(9):771–779CrossRefGoogle Scholar
  41. 41.
    Jablonski PD, Cowen CJ (2009) Homogenizing a nickel-based superalloy: thermodynamic and kinetic simulation and experimental results. Metall Mater Trans B 40(2):182–186CrossRefGoogle Scholar
  42. 42.
    Jha R, Pettersson F, Dulikravich G, Saxen H, Chakraborti N (2015) Evolutionary design of nickel-based superalloys using data-driven genetic algorithms and related strategies. Mater Manuf Process 30(4):488–510CrossRefGoogle Scholar
  43. 43.
    Jones E, Oliphant T, Peterson P (2014) {SciPy}: Open source scientific tools for {Python}. https://doi.org/10.6084/m9.figshare.1015761
  44. 44.
    Jou HJ, Voorhees P, Olson GB (2004) Computer simulations for the prediction of microstructure/property variation in aeroturbine disks. Superalloys 2004:877–886Google Scholar
  45. 45.
    Kalidindi SR (1998) Modeling the strain hardening response of low sfe fcc alloys. Int J Plast 14(12):1265–1277CrossRefGoogle Scholar
  46. 46.
    Kalidindi SR (2012) Computationally efficient, fully coupled multiscale modeling of materials phenomena using calibrated localization linkages. International Scholarly Research Notices 2012Google Scholar
  47. 47.
    Kar SK, Sondhi S (2014) Microstructure based and temperature dependent model of flow behavior of a polycrystalline nickel based superalloy. Mater Sci Eng A 601:97–105CrossRefGoogle Scholar
  48. 48.
    Keshavarz S, Ghosh S (2015) Hierarchical crystal plasticity fe model for nickel-based superalloys: sub-grain microstructures to polycrystalline aggregates. Int J Solids Struct 55:17–31CrossRefGoogle Scholar
  49. 49.
    Kozar R, Suzuki A, Milligan W, Schirra J, Savage M, Pollock T (2009) Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys. Metall Mater Trans A 40(7):1588–1603CrossRefGoogle Scholar
  50. 50.
    Kuehmann C, Olson G (2009) Computational materials design and engineering. Mater Sci Technol 25 (4):472–478CrossRefGoogle Scholar
  51. 51.
    Kumar R, Wang AJ, McDowell D (2006) Effects of microstructure variability on intrinsic fatigue resistance of nickel-base superalloys–a computational micromechanics approach. Int J Fract 137(1-4):173–210CrossRefGoogle Scholar
  52. 52.
    Li S, Honarmandi P, Arróyave R, Rivera-Díaz-del-Castillo P (2015) Describing the deformation behaviour of trip and dual phase steels employing an irreversible thermodynamics formulation. Mater Sci Technol 31(13):1658–1663CrossRefGoogle Scholar
  53. 53.
    Li X, Saunders N, Miodownik A (2002) The coarsening kinetics of γ particles in nickel-based alloys. Metall Mater Trans A 33(11):3367–3373CrossRefGoogle Scholar
  54. 54.
    Lv X, Sun F, Tong J, Feng Q, Zhang J (2015) Paired dislocations and their interactions with γ particles in polycrystalline superalloy gh4037. J Mater Eng Perform 24(1):143–148CrossRefGoogle Scholar
  55. 55.
    Mahfouf M, Jamei M, Linkens D (2005) Optimal design of alloy steels using multiobjective genetic algorithms. Mater Manuf Process 20(3):553–567CrossRefGoogle Scholar
  56. 56.
    McQueen H, Ryan N (2002) Constitutive analysis in hot working. Mater Sci Eng A 322(1):43–63CrossRefGoogle Scholar
  57. 57.
    Mecking H, Kocks U (1981) Kinetics of flow and strain-hardening. Acta Metall 29(11):1865–1875CrossRefGoogle Scholar
  58. 58.
    Menou E, Ramstein G, Bertrand E, Tancret F (2016) Multi-objective constrained design of nickel-base superalloys using data mining-and thermodynamics-driven genetic algorithms. Model Simul Mater Sci Eng 24 (5):055,001CrossRefGoogle Scholar
  59. 59.
    Miodownik AP, Saunders N (1995) Applications of thermodynamics in the synthesis and processing of materials. TMSGoogle Scholar
  60. 60.
    Mishima Y, Ochiai S, Hamao N, Yodogawa M, Suzuki T (1986) Solid solution hardening of nickel: role of transition metal and b-subgroup solutes. Trans Jpn Inst Metals 27(9):656–664CrossRefGoogle Scholar
  61. 61.
    Musinski WD, McDowell DL (2015) On the eigenstrain application of shot-peened residual stresses within a crystal plasticity framework: application to Ni-base superalloy specimens. Int J Mech Sci 100:195–208CrossRefGoogle Scholar
  62. 62.
    Nishizawa T, Ohnuma I, Ishida K (2001) Correlation between interfacial energy and phase diagram in ceramic-metal systems. J Phase Equilib 22(3):269–275CrossRefGoogle Scholar
  63. 63.
    Olson G (2013) Genomic materials design: the ferrous frontier. Acta Mater 61(3):771–781CrossRefGoogle Scholar
  64. 64.
    Olson GB, Jou H-J, Jung J, Sebastian JT, Misra A, Locci I, Hull D (2008) Precipitation model validation in 3rd generation aeroturbine disc alloys. In: Superalloys, 2008. TMS, pp 923–932Google Scholar
  65. 65.
    Olson GB (1997) Computational design of hierarchically structured materials. Science 277(5330):1237–1242CrossRefGoogle Scholar
  66. 66.
    Perez M, Dumont M, Acevedo-Reyes D (2008) Implementation of classical nucleation and growth theories for precipitation. Acta Mater 56(9):2119–2132CrossRefGoogle Scholar
  67. 67.
    Philippe T, Voorhees P (2013) Ostwald ripening in multicomponent alloys. Acta Mater 61(11):4237–4244CrossRefGoogle Scholar
  68. 68.
    Radis R, Schaffer M, Albu M, Kothleitner G, Pölt P, Kozeschnik E (2009) Multimodal size distributions of γ precipitates during continuous cooling of UDIMET 720 Li. Acta Mater 57(19):5739–5747CrossRefGoogle Scholar
  69. 69.
    Reed R, Tao T, Warnken N (2009) Alloys-by-design: application to nickel-based single crystal superalloys. Acta Mater 57(19):5898–5913CrossRefGoogle Scholar
  70. 70.
    Reed RC (2006) The superalloys. Cambridge University PressGoogle Scholar
  71. 71.
    Rettig R, Ritter NC, Helmer HE, Neumeier S, Singer RF (2015) Single-crystal nickel-based superalloys developed by numerical multi-criteria optimization techniques: design based on thermodynamic calculations and experimental validation. Model Simul Mater Sci Eng 23(3):035,004CrossRefGoogle Scholar
  72. 72.
    Rivera-Díaz-del-Castillo P, Hayashi K, Galindo-Nava E (2013) Computational design of nanostructured steels employing irreversible thermodynamics. Mater Sci Technol 29(10):1206–1211CrossRefGoogle Scholar
  73. 73.
    Roth H, Davis C, Thomson R (1997) Modeling solid solution strengthening in nickel alloys. Metall Mater Trans A 28(6):1329–1335CrossRefGoogle Scholar
  74. 74.
    Rougier L, Jacot A, Gandin CA, Di Napoli P, Théry PY, Ponsen D, Jaquet V (2013) Numerical simulation of precipitation in multicomponent Ni-base alloys. Acta Mater 61(17):6396–6405CrossRefGoogle Scholar
  75. 75.
    Rudolph G (1994) Convergence analysis of canonical genetic algorithms. IEEE Trans Neural Netw 5(1):96–101CrossRefGoogle Scholar
  76. 76.
    Russell KC (1980) Nucleation in solids: the induction and steady state effects. Adv Colloid Interf Sci 13 (3):205–318CrossRefGoogle Scholar
  77. 77.
    Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C (2013) Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65(11):1501–1509CrossRefGoogle Scholar
  78. 78.
    Samanta B, Al-Balushi KR, Al-Araimi SA (2006) Artificial neural networks and genetic algorithm for bearing fault detection. Soft Comput 10(3):264–271CrossRefGoogle Scholar
  79. 79.
    Saunders N, Fahrmann M, Small CJ (2000) The application of calphad calculations to Ni-based superalloys. ROLLS ROYCE PLC-REPORT-PNR 803–811Google Scholar
  80. 80.
    Saunders N, Guo U, Li X, Miodownik A, Schillé JP (2003) Using JMatPro to model materials properties and behavior. JOM 55(12):60–65CrossRefGoogle Scholar
  81. 81.
    Senecal PK (2000) Numerical optimization using the GEN4 micro-genetic algorithm code. University of Wisconsin-MadisonGoogle Scholar
  82. 82.
    Sinclair C, Poole W, Bréchet Y (2006) A model for the grain size dependent work hardening of copper. Scr Mater 55(8):739–742CrossRefGoogle Scholar
  83. 83.
    Smallman RE, Bishop RJ (1999) Modern physical metallurgy and materials engineering. Butterworth-HeinemannGoogle Scholar
  84. 84.
    Sudbrack CK, Ziebell TD, Noebe RD, Seidman DN (2008) Effects of a tungsten addition on the morphological evolution, spatial correlations and temporal evolution of a model Ni–Al–Cr superalloy. Acta Mater 56(3):448–463CrossRefGoogle Scholar
  85. 85.
    Svoboda J, Fischer F, Fratzl P, Kozeschnik E (2004) Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: i: theory. Mater Sci Eng A 385(1):166–174Google Scholar
  86. 86.
    Tancret F (2012) Computational thermodynamics and genetic algorithms to design affordable γ-strengthened nickel–iron based superalloys. Model Simul Mater Sci Eng 20(4):045,012CrossRefGoogle Scholar
  87. 87.
    Tancret F (2013) Computational thermodynamics, gaussian processes and genetic algorithms: combined tools to design new alloys. Model Simul Mater Sci Eng 21(4):045,013CrossRefGoogle Scholar
  88. 88.
    TCNI6 Ni-based superalloy database. Themo-Calc Software AB, Stockholm, Sweden (2013)Google Scholar
  89. 89.
    Thomas A, El-Wahabi M, Cabrera J, Prado J (2006) High temperature deformation of Inconel 718. J Mater Process Technol 177(1):469–472CrossRefGoogle Scholar
  90. 90.
    Thompson AA (1975) Yielding in nickel as a function of grain or cell size. Acta Metall 23(11):1337–1342CrossRefGoogle Scholar
  91. 91.
    Tiley J, Viswanathan G, Srinivasan R, Banerjee R, Dimiduk D, Fraser H (2009) Coarsening kinetics of γ precipitates in the commercial nickel base superalloy rené 88 dt. Acta Mater 57(8):2538–2549CrossRefGoogle Scholar
  92. 92.
    Vattré A, Devincre B, Feyel F, Gatti R, Groh S, Jamond O, Roos A (2014) Modelling crystal plasticity by 3d dislocation dynamics and the finite element method: the discrete-continuous model revisited. J Mech Phys Solids 63:491–505CrossRefGoogle Scholar
  93. 93.
    Vattré A, Devincre B, Roos A (2009) Dislocation dynamics simulations of precipitation hardening in Ni-based superalloys with high γ volume fraction. Intermetallics 17(12):988–994CrossRefGoogle Scholar
  94. 94.
    Wagner R, Kampmann R, Voorhees PW (2001) Homogeneous second-phase precipitation. Phase Transformations in Materials 309–407Google Scholar
  95. 95.
    Wang Y, Shao WZ, Zhen L, Yang L, Zhang XM (2008) Flow behavior and microstructures of superalloy 718 during high temperature deformation. Mater Sci Eng A 497(1):479–486Google Scholar
  96. 96.
    Wen DX, Lin Y, Li HB, Chen XM, Deng J, Li LT (2014) Hot deformation behavior and processing map of a typical Ni-based superalloy. Mater Sci Eng A 591:183–192CrossRefGoogle Scholar
  97. 97.
    Wheeler D, Brough D, Fast T, Kalidindi S, Reid A (2014) Pymks: materials knowledge system in python. Figshare. https://doi.org/10.6084/m9.figshare.1015761
  98. 98.
    Wu HY, Sun PH, Zhu FJ, Wang SC, Wang WR, Wang CC, Chiu CH (2012) Tensile flow behavior in Inconel 600 alloy sheet at elevated temperatures. Procedia Engineering 36:114– 120CrossRefGoogle Scholar
  99. 99.
    Wu HY, Zhu FJ, Wang SC, Wang WR, Wang CC, Chiu CH (2012) Hot deformation characteristics and strain-dependent constitutive analysis of Inconel 600 superalloy. J Mater Sci 47(9):3971–3981CrossRefGoogle Scholar
  100. 100.
    Zhang P, Hu C, Ding CG, Zhu Q, Qin HY (2015) Plastic deformation behavior and processing maps of a ni-based superalloy. Mater Des 65:575–584CrossRefGoogle Scholar
  101. 101.
    Zhang T, Collins DM, Dunne FP, Shollock BA (2014) Crystal plasticity and high-resolution electron backscatter diffraction analysis of full-field polycrystal ni superalloy strains and rotations under thermal loading. Acta Mater 80:25–38CrossRefGoogle Scholar
  102. 102.
    Zhou H, Cen K, Fan J (2004) Modeling and optimization of the nox emission characteristics of a tangentially fired boiler with artificial neural networks. Energy 29(1):167–183CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.NIST/Materials Science and Engineering DivisionGaithersburgUSA
  2. 2.Theiss ResearchLa JollaUSA

Personalised recommendations