High Throughput Assays for Additively Manufactured Ti-Ni Alloys Based on Compositional Gradients and Spherical Indentation

  • X. Gong
  • S. Mohan
  • M. Mendoza
  • A. Gray
  • P. Collins
  • S. R. Kalidindi
TECHNICAL ARTICLE

Abstract

Recent advances in additive manufacturing (AM) reveal an exciting opportunity to build materials with novel internal structures combined with intricate part geometries that cannot be achieved by traditional manufacturing approaches. The large space of potential material chemistries combined with non-equilibrium microstructures obtained in AM presents a significant challenge for a systematic exploration and optimization of the final properties exhibited by AM parts when using the existing knowledge databases established for conventionally processed materials. In this paper, we demonstrate novel high throughput assays that can be used to prototype a large library of material chemistries (and possibly different process histories) in small quantities, and subsequently apply spherical indentation stress-strain protocols to screen them for their mechanical performance. The potential of these new assays is demonstrated on a class of Ti-Ni alloys, whose Ni composition ranges between 0 and 11%wt.

Keywords

High throughput Nanoindentation Ni-Ti Hertzian indentation Additive manufacturing 

References

  1. 1.
    Collins PC, et al (2014) Progress Toward an Integration of Process – Structure – Property – Performance Models for “Three-Dimensional (3-D) Printing” of Titanium Alloys JOM 66(7):1299–1309Google Scholar
  2. 2.
    Zagrebelnyy D, Krane MJM (2009) Segregation Development in Multiple Melt Vacuum Arc Remelting. Metall Mater Trans B Process Metall Mater Process Sci 40(3):281–288CrossRefGoogle Scholar
  3. 3.
    Lütjering G, Williams J (2003) Titanium, Vol. 2. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928CrossRefGoogle Scholar
  5. 5.
    Salzbrenner B et al (2016) Defect Characterization for Material Assurance in Metal Additive Manufacturing (FY15–0664), 2016, Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)Google Scholar
  6. 6.
    Pathak S, Kalidindi SR (2015) Spherical nanoindentation stress–strain curves. Mater Sci Eng R Rep 91:1–36CrossRefGoogle Scholar
  7. 7.
    Weaver JS et al (2016) On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction. Acta Mater 117:23–34CrossRefGoogle Scholar
  8. 8.
    Kalidindi SR, Pathak S (2008) Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater 56(14):3523–3532CrossRefGoogle Scholar
  9. 9.
    Pathak S et al (2009) Importance of surface preparation on the nano-indentation stress-strain curves measured in metals. J Mater Res 24(03):1142–1155CrossRefGoogle Scholar
  10. 10.
    Pathak S, Stojakovic D, Kalidindi SR (2009) Measurement of the local mechanical properties in polycrystalline samples using spherical nanoindentation and orientation imaging microscopy. Acta Mater 57(10):3020–3028CrossRefGoogle Scholar
  11. 11.
    Pathak S, Kalidindi SR, Mara NA (2015) Investigations of orientation and length scale effects on micromechanical responses in polycrystalline zirconium using spherical nanoindentation. SMM 113:241–245Google Scholar
  12. 12.
    Vachhani SJ, Doherty RD, Kalidindi SR (2013) Effect of the continuous stiffness measurement on the mechanical properties extracted using spherical nanoindentation. Acta Mater 61(10):3744–3751CrossRefGoogle Scholar
  13. 13.
    Weaver JS, Kalidindi SR (2016) Mechanical characterization of Ti-6Al-4V titanium alloy at multiple length scales using spherical indentation stress-strain measurements. Mater Des 111(5 Dec 2016):463–472Google Scholar
  14. 14.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583CrossRefGoogle Scholar
  15. 15.
    Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(1):3–20CrossRefGoogle Scholar
  16. 16.
    Pharr GM, Bolshakov A (2002) Understanding nanoindentation unloading curves. J Mater Res 17(10):2660–2671CrossRefGoogle Scholar
  17. 17.
    Banerjee R et al (2003) Microstructural evolution in laser deposited compositionally graded alpha/beta titanium-vanadium alloys. Acta Mater 51(11):3277–3292CrossRefGoogle Scholar
  18. 18.
    Geng J et al (2016) Bulk combinatorial synthesis and high throughput characterization for rapid assessment of magnetic materials: application of laser engineered net shaping (LENS (TM)). JOM 68(7):1972–1977CrossRefGoogle Scholar
  19. 19.
    Samimi P et al (2014) A novel tool to assess the influence of alloy composition on the oxidation behavior and concurrent oxygen-induced phase transformations for binary Ti-xMo alloys at 650 degrees C. Corros Sci 89:295–306CrossRefGoogle Scholar
  20. 20.
    Polanski M et al (2013) Combinatorial synthesis of alloy libraries with a progressive composition gradient using laser engineered net shaping (LENS): hydrogen storage alloys. Int J Hydrog Energy 38(27):12159–12171CrossRefGoogle Scholar
  21. 21.
    Samimi P et al (2015) A new combinatorial approach to assess the influence of alloy composition on the oxidation behavior and concurrent oxygen-induced phase transformations for binary Ti-xCr alloys at 650 degrees C. Corros Sci 97:150–160CrossRefGoogle Scholar
  22. 22.
    Schwendner KI et al (2001) Direct laser deposition of alloys from elemental powder blends. Scr Mater 45(10):1123–1129CrossRefGoogle Scholar
  23. 23.
    Collins PC, Banerjee R, Fraser HL (2003) The influence of the enthalpy of mixing during the laser deposition of complex titanium alloys using elemental blends. Scr Mater 48(10):1445–1450CrossRefGoogle Scholar
  24. 24.
    Collins PC et al (2016) Microstructural Control of Additively Manufactured Metallic Materials. Annu Rev Mater Res 46:63–91CrossRefGoogle Scholar
  25. 25.
    Khosravani A, Ahmet C, Kalidindi SR (2017) Development of high throughput assays for establishing process-structure-property linkages in multiphase polycrystalline metals: application to dual-phase steels. Acta Mater 123:55–69CrossRefGoogle Scholar
  26. 26.
    Sharpe WN et al (2003) Tensile testing of MEMS materials—recent progress. J Mater Sci 38(20):4075–4079CrossRefGoogle Scholar
  27. 27.
    Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4(7):525–529CrossRefGoogle Scholar
  28. 28.
    Frick CP et al (2008) Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater Sci Eng A 489(1–2):319–329CrossRefGoogle Scholar
  29. 29.
    Shan ZW et al (2008) Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater 7(2):115–119CrossRefGoogle Scholar
  30. 30.
    Bei H et al (2007) Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique. Scr Mater 57(5):397–400CrossRefGoogle Scholar
  31. 31.
    Patel DK, Kalidindi SR (2016) Correlation of spherical nanoindentation stress-strain curves to simple compression stress-strain curves for elastic-plastic isotropic materials using finite element models. Acta Mater 112:295–302CrossRefGoogle Scholar
  32. 32.
    Patel DK, Al-Harbi HF, Kalidindi SR (2014) Extracting single-crystal elastic constants from polycrystalline samples using spherical nanoindentation and orientation measurements. Acta Mater 79:108–116CrossRefGoogle Scholar
  33. 33.
    Johnson KL (2009) Contact mechanics. Proc Inst Mech Eng Part J-J Eng Tribol 223(J3):254–254Google Scholar
  34. 34.
    Hertz H (1896) Miscellaneous papers. MacmillanGoogle Scholar
  35. 35.
    Li X, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48(1):11–36CrossRefGoogle Scholar
  36. 36.
    Pathak S, Kalidindi SR, Mara NA (2016) Investigations of orientation and length scale effects on micromechanical responses in polycrystalline zirconium using spherical nanoindentation. Scr Mater 113:241–245CrossRefGoogle Scholar
  37. 37.
    Vachhani SJ, Kalidindi SR (2015) Grain-scale measurement of slip resistances in aluminum polycrystals using spherical nanoindentation. Acta Mater 90:27–36CrossRefGoogle Scholar
  38. 38.
    Fan Z, Liou F (2012) Numerical modeling of the additive manufacturing (AM) processes of titanium alloy. Titanium alloys–towards achieving enhanced properties for diversified applications: p. 3–28Google Scholar
  39. 39.
    Baker AH, Collins PC, Williams JC (2017) New Nomenclatures for Heat Treatments of Additively Manufactured Titanium Alloys. JOM 69(7):1211–1227Google Scholar
  40. 40.
    Mendoza MY et al (2017) Microstructures and Grain Refinement of Additive-Manufactured Ti-xW Alloys. Metall Mater Trans A 48(7):3594–3605Google Scholar
  41. 41.
    Mantri, S., et al., The effect of boron on the grain size and texture in additively manufactured β-Ti alloys. J Mater Sci: 52(10):12455–12466Google Scholar
  42. 42.
    Rolchigo MR, Mendoza MY, Samimi P, Brice DA, Martin B, Collins PC et al (2017) Modeling of Ti-W solidification microstructures under additive manufacturing conditions. Metall Mater Trans A 48:3606–3622Google Scholar
  43. 43.
    Dutta B, Froes FHS (2016) Additive manufacturing of titanium alloys. Butterworth-Heinemann LimitedGoogle Scholar
  44. 44.
    SAE International (2011) Titanium Alloy Direct Deposited Products 6Al - 4V Annealed, SAE Standard AMS4999AGoogle Scholar
  45. 45.
    Williams JC, Baggerly RG, Paton NE (2002) Deformation behavior of HCP Ti-Al alloy single crystals. Metall Mater Trans A 33(3):837–850Google Scholar
  46. 46.
    Kwon J et al (2013) Characterization of deformation anisotropies in an α-Ti alloy by nanoindentation and electron microscopy. Acta Mater 61(13):4743–4756CrossRefGoogle Scholar
  47. 47.
    Savage MF et al (2001) Deformation mechanisms and microtensile behavior of single colony Ti-6242Si. Mater Sci Eng 319:398–403CrossRefGoogle Scholar
  48. 48.
    Savage MF, Tatalovich J, Mills MJ (2004) Anisotropy in the room-temperature deformation of alpha-beta colonies in titanium alloys: role of the alpha-beta interface. Philos Mag 84(11):1127–1154CrossRefGoogle Scholar
  49. 49.
    Neeraj T et al (2005) Observation of tension-compression asymmetry in alpha and alpha/beta titanium alloys. Philos Mag 85(2–3):279–295CrossRefGoogle Scholar
  50. 50.
    Otsu N (1979) A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRefGoogle Scholar
  51. 51.
    Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–168CrossRefGoogle Scholar
  52. 52.
    Torquato S, Lu B (1993) Chord-length distribution function for 2-phase random-media. Phys Rev E 47(4):2950–2953CrossRefGoogle Scholar
  53. 53.
    Lu BL, Torquato S (1992) Lineal-path function for random heterogeneous materials. Phys Rev A 45(2):922–929CrossRefGoogle Scholar
  54. 54.
    Kalidindi SR, Niezgoda SR, Salem AA (2011) Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM 63(4):34–41CrossRefGoogle Scholar
  55. 55.
    Pearson K (1895) Note on regression and inheritance in the case of two parents. Proc R Soc Lond 58:240–242CrossRefGoogle Scholar
  56. 56.
    Dipen KP, Kalidindi DR (2016) Engineering M Correlation of spherical nanoindentation stress-strain curves to simple compression stress- strain curves for elastic-plastic isotropic materials based on finite element models. Acta Mater 112:295–302Google Scholar
  57. 57.
    Weaver JS, Khosravani A, Castillo A, Kalidindi SR (2016) High throughput exploration of process-property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples. Int Mater Manuf Innov 5(1):1–20. https://doi.org/10.1186/s40192-016-0054-3
  58. 58.
    Patel DK, Kalidindi SR (2017) Estimating the slip resistance from spherical nanoindentation and orientation measurements in polycrystalline samples of cubic metals. Int J Plast 92:19–30CrossRefGoogle Scholar
  59. 59.
    Smith WF et al (2006) Fundamentos de la ciencia e ingeniería de materiales: McGraw-HillGoogle Scholar
  60. 60.
    Dieter GE, Bacon DJ (1986) Mechanical metallurgy, vol 3. McGraw-hill, New YorkGoogle Scholar
  61. 61.
    Fizanne-Michel C et al (2014) Determination of hardness and elastic modulus inverse pole figures of a polycrystalline commercially pure titanium by coupling nanoindentation and EBSD techniques. Mater Sci Eng A 613:159–162CrossRefGoogle Scholar
  62. 62.
    Voigt W (1910) Lehrbuch der Kristallphysik, Leipzig, BerlinGoogle Scholar
  63. 63.
    Reuss A (1929) Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1):49–58Google Scholar
  64. 64.
    Toprek D, Belosevic-Cavor J, Koteski V (2015) Ab initio studies of the structural, elastic, electronic and thermal properties of NiTi 2 intermetallic. J Phys Chem Solids 85:197–205CrossRefGoogle Scholar
  65. 65.
    Rivera-Diaz-del-Castillo PE, Xu W (2011) Heat treatment and composition optimization of nanoprecipitation hardened alloys. Mater Manuf Process 26(3):375–381CrossRefGoogle Scholar
  66. 66.
    Materials Properties Handbook: Titanium Alloys, ed. E.W.C. R. Boyer, and G. Welsch 1993: ASM InternationalGoogle Scholar
  67. 67.
    ASTM B348-13 (2013) Standard Specification for Titanium and Titanium Alloy Bars and Billets. ASTM International, West Conshohocken, PA. https://doi.org/10.1520/B0348
  68. 68.
    Stringfellow RG, Parks DM (1991) A self-consistent model of isotropic viscoplastic behavior in multiphase materials. Int J Plast 7(6):529–547CrossRefGoogle Scholar
  69. 69.
    Lütjering G (1998) Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater Sci Eng A 243(1–2):32–45CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • X. Gong
    • 1
  • S. Mohan
    • 2
  • M. Mendoza
    • 3
  • A. Gray
    • 4
  • P. Collins
    • 3
  • S. R. Kalidindi
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of Materials Science and EngineeringIowa State UniversityAmesUSA
  4. 4.University of North TexasDentonUSA

Personalised recommendations