Global Journal of Flexible Systems Management

, Volume 19, Issue 3, pp 255–272 | Cite as

Social Media Data Inputs in Product Design: Case of a Smartphone

  • Ashish Kumar Rathore
  • Santanu Das
  • P. Vigneswara Ilavarasan
Original Research


Due to the vast availability of user-generated content, social media is considered useful for businesses to track users’ reactions, preferences and change in sentiments toward a specific product. The rise of social media is transforming the way businesses operate and interact with various related stakeholders and communities tremendously. Many businesses are competing to optimize their strategies and approaches to control this amount of information. The paper presents the importance of using social media content in the new product development and shows a new way of conversational analysis to generate the preliminary findings of an ongoing study. We undertook a case study of mobile phone, Samsung Galaxy S6, and S6 Edge, using two tools (e.g., R and NodeXL) to extract and analyze the Twitter data. Further, we used content analysis and network analysis approaches to get insights based on thematic pattern and topological metrics of social networks. Our findings show that there are considerable differences in the structure of conversational patterns of the two launches durations. The insights on these patterns can be extremely enlightening about early users’ perceptions and value judgments linked with the competing products.


Data mining Product design Social media Social media analytics Twitter 


Compliance with Ethical Standards

Conflict of interest

We would like to declare that there is no conflict of interest.


  1. Agarwal, A., Xie, B., Vovsha, I., Rambow, O., & Passonneau, R. (2011). Sentiment analysis of twitter data. In Proceedings of the workshop on languages in social media (pp. 30–38). Association for Computational Linguistics.Google Scholar
  2. Allan, B. (2005). Social enterprise: Through the eyes of the consumer (prepared for the National Consumer Council). Social Enterprise Journal, 1(1), 57–77.CrossRefGoogle Scholar
  3. Aral, S., Dellarocas, C., & Godes, D. (2013). Introduction to the special issue—Social media and business transformation: A framework for research. Information Systems Research, 24(1), 3–13.CrossRefGoogle Scholar
  4. Barbosa, L., & Feng, J. (2010). Robust sentiment detection on twitter from biased and noisy data. In Proceedings of the 23rd international conference on computational linguistics: Posters (pp. 36–44). Association for Computational Linguistics.Google Scholar
  5. Bharathi, S. V. (2017). Prioritizing and ranking the big data information security risk spectrum. Global Journal of Flexible Systems Management, 18(3), 183–201.CrossRefGoogle Scholar
  6. Bruns, A., & Stieglitz, S. (2013). Towards more systematic Twitter analysis: Metrics for tweeting activities. International Journal of Social Research Methodology, 16(2), 91–108.CrossRefGoogle Scholar
  7. Chae, B. K. (2015). Insights from hashtag# supplychain and Twitter Analytics: Considering Twitter and Twitter data for supply chain practice and research. International Journal of Production Economics, 165, 247–259.CrossRefGoogle Scholar
  8. Chamlertwat, W., Bhattarakosol, P., Rungkasiri, T., & Haruechaiyasak, C. (2012). Discovering consumer insight from Twitter via sentiment analysis. Journal of UCS, 18(8), 973–992.Google Scholar
  9. Constantinides, E., & Fountain, S. J. (2008). Web 2.0: Conceptual foundations and marketing issues. Journal of Direct, Data and Digital Marketing Practice, 9(3), 231–244.CrossRefGoogle Scholar
  10. Culotta, A. (2010). Towards detecting influenza epidemics by analyzing Twitter messages. In Proceedings of the first workshop on social media analytics (pp. 115–122). ACM.Google Scholar
  11. Culotta, A., & Cutler, J. (2016). Mining brand perceptions from Twitter social networks. Marketing Science, 35(3), 343–362.CrossRefGoogle Scholar
  12. Di Martino, S., Romano, S., Bertolotto, M., Kanhabua, N., Mazzeo, A., & Nejdl, W. (2017). Towards exploiting social networks for detecting epidemic outbreaks. Global Journal of Flexible Systems Management, 18(1), 61–71.CrossRefGoogle Scholar
  13. Fuller, J., Bartl, M., Ernst, H., & Mühlbacher, H. (2006). Community based innovation. Electronic Commerce Research, 6, 57–73.CrossRefGoogle Scholar
  14. Grover, P., & Kar, A. K. (2017). Big data analytics: A review on theoretical contributions and tools used in literature. Global Journal of Flexible Systems Management, 18(3), 203–229.CrossRefGoogle Scholar
  15. Hansen, R., & Birkinshaw, J. (2007). The innovation value chain. Harvard Business Review, 85(6), 121–135.Google Scholar
  16. Hansen, D., Shneiderman, B., & Smith, M. A. (2010). Analyzing social media networks with NodeXL: Insights from a connected world. Burlington: Morgan Kaufmann.Google Scholar
  17. Harrington, S., Highfield, T., & Bruns, A. (2013). More than a backchannel: Twitter and television. Participations, 10(1), 405–409.Google Scholar
  18. He, W., Wu, H., Yan, G., Akula, V., & Shen, J. (2015). A novel social media competitive analytics framework with sentiment benchmarks. Information & Management, 52(7), 801–812.CrossRefGoogle Scholar
  19. He, W., & Yan, G. (2014). Mining blogs and forums to understand the use of social media in customer co-creation. The Computer Journal, 58(9), 1909–1920.CrossRefGoogle Scholar
  20. He, W., Zha, S., & Li, L. (2013). Social media competitive analysis and text mining: A case study in the pizza industry. International Journal of Information Management, 33(3), 464–472.CrossRefGoogle Scholar
  21. Heer, J., & Boyd, D. (2005). Vizster: Visualizing online social networks. In IEEE symposium on information visualization, INFOVIS 2005 (pp. 32–39). IEEE.Google Scholar
  22. Hennig-Thurau, T., Malthouse, E. C., Friege, C., Gensler, S., Lobschat, L., Rangaswamy, A., et al. (2010). The impact of new media on customer relationships. Journal of Service Research, 13(3), 311–330.CrossRefGoogle Scholar
  23. Hoyer, W. D., Chandy, R., Dorotic, M., Krafft, M., & Singh, S. S. (2010). Consumer co-creation in new product development. Journal of Service Research, 13(3), 283–296.CrossRefGoogle Scholar
  24. Ivanov, A. E. (2012). The Internet‘s impact on integrated marketing communication. Procedia Economics and Finance, 3, 536–542.CrossRefGoogle Scholar
  25. Jang, H. J., Sim, J., Lee, Y., & Kwon, O. (2013). Deep sentiment analysis: Mining the causality between personality-value-attitude for analyzing business ads in social media. Expert Systems with Applications, 40, 7492–7503.CrossRefGoogle Scholar
  26. Kalampokis, E., Tambouris, E., & Tarabanis, K. (2013). Understanding the predictive power of social media. Internet Research, 23(5), 544–559.CrossRefGoogle Scholar
  27. Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59–68.CrossRefGoogle Scholar
  28. Kristensson, P., Matthing, J., & Johansson, N. (2008). Key strategies for the successful involvement of customers in the co-creation of new technology-based services. International Journal of Service Industry Management, 19(4), 474–491.CrossRefGoogle Scholar
  29. Kumar, A., & Sebastian, T. M. (2012). Sentiment analysis on twitter. International Journal of Computer Science Issues, 9(4), 372–378.Google Scholar
  30. Kunz, W., Schmitt, B., & Meyer, A. (2011). How does perceived firm innovativeness affect the consumer? Journal of Business Research, 64(8), 816–822.CrossRefGoogle Scholar
  31. Melville, P., Sindhwani, V., & Lawrence, R. (2009). Social media analytics: Channeling the power of the blogosphere for marketing insight. Proceedings of the WIN, 1(1), 1–5.Google Scholar
  32. Mladenow, A., Bauer, C., & Strauss, C. (2014). Social crowd integration in new product development: Crowdsourcing communities nourish the open innovation paradigm. Global Journal of Flexible Systems Management, 15(1), 77–86.CrossRefGoogle Scholar
  33. Moe, W. W., & Schweidel, D. A. (2011). Online product opinions: Incidence, evaluation and evolution. Marketing Science, 31(3), 372–386.CrossRefGoogle Scholar
  34. Nambisan, S. (2013). Information technology and product/service innovation: A brief assessment and some suggestions for future research. Journal of the Association for Information Systems, 14(4), 215–226.CrossRefGoogle Scholar
  35. Padmaja, S., & Fatima, S. S. (2013). Opinion mining and sentiment analysis-an assessment of peoples’ belief: A survey. International Journal of Ad hoc, Sensor & Ubiquitous Computing, 4(1), 21.CrossRefGoogle Scholar
  36. Palanisamy, R., & Foshay, N. (2013). Impact of user’s internal flexibility and participation on usage and information systems flexibility. Global Journal of Flexible Systems Management, 14(4), 195–209.CrossRefGoogle Scholar
  37. Papadopoulos, S., Kompatsiaris, Y., Vakali, A., & Spyridonos, P. (2012). Community detection in social media. Data Mining and Knowledge Discovery, 24(3), 515–554.CrossRefGoogle Scholar
  38. Rathore, A. K., & Ilavarasan, P. V. (2018). Social media and business practices. In M. Khosrow-Pour (Ed.), Encyclopedia of Information Science and Technology (4th ed., pp. 7126–7139). Hershey: IGI GlobalGoogle Scholar
  39. Rathore, A. K., Ilavarasan, P. V., & Dwivedi, Y. K. (2016). Social media content and product co-creation: An emerging paradigm. Journal of Enterprise Information Management, 29(1), 7–18.CrossRefGoogle Scholar
  40. Ribarsky, W., Wang, D. X., & Dou, W. (2014). Social media analytics for competitive advantage. Computers & Graphics, 38, 328–331.CrossRefGoogle Scholar
  41. Sashi, C. M. (2012). Customer engagement, buyer-seller relationships, and social media. Management Decision, 50(2), 253–272.CrossRefGoogle Scholar
  42. Seva, R. R., Duh, H. B. L., & Helander, M. G. (2007). The marketing implications of affective product design. Applied Ergonomics, 38(6), 723–731.CrossRefGoogle Scholar
  43. Shen, Y. C., Huang, C. Y., Chu, C. H., & Liao, H. C. (2010). Virtual community loyalty: An interpersonal-interaction perspective. International Journal of Electronic Commerce, 15(1), 49–74.CrossRefGoogle Scholar
  44. Singh, A. (2013). Social media and corporate agility. Global Journal of Flexible Systems Management, 14(4), 255–260.CrossRefGoogle Scholar
  45. Sinha, V., Subramanian, K. S., Bhattacharya, S., & Chaudhary, K. (2012). The contemporary framework on social media analytics as an emerging tool for behavior informatics, HR analytics and business process. Management, Journal of Contemporary Management Issues, 17(2), 65–84.Google Scholar
  46. Statista. (2017). Global number of internet users 2005–2016; Retrieved July 22, 2017, from
  47. Thelwall, M., Buckley, K., & Paltoglou, G. (2011). Sentiment in Twitter events. Journal of the Association for Information Science and Technology, 62(2), 406–418.Google Scholar
  48. Treem, J. W., & Leonardi, P. M. (2013). Social media use in organizations: Exploring the affordances of visibility, editability, persistence, and association. Annals of the International Communication Association, 36(1), 143–189.CrossRefGoogle Scholar
  49. Verhoef, P. C., Beckers, S. F. M., & van Doorn, J. (2013). Understand the perils of co-creation. Harvard Business Review, 91(9), 28.Google Scholar
  50. Williams, S. A., Terras, M. M., & Warwick, C. (2013). What do people study when they study Twitter? Classifying Twitter related academic papers. Journal of Documentation, 69(3), 384–410.CrossRefGoogle Scholar
  51. Yoon, S., Elhadad, N., & Bakken, S. (2013). A practical approach for content mining of Tweets. American Journal of Preventive Medicine, 45(1), 122–129.CrossRefGoogle Scholar
  52. Younis, E. M. (2015). Sentiment analysis and text mining for social media microblogs using open source tools: An empirical study. International Journal of Computer Applications, 112(5), 44–48.Google Scholar
  53. Yuan, Y. C., Zhao, X., Liao, Q., & Chi, C. (2013). The use of different information and communication technologies to support knowledge sharing in organizations: From e-mail to micro-blogging. Journal of the Association for Information Science and Technology, 64(8), 1659–1670.Google Scholar
  54. Zembik, M. (2014). Social media as a source of knowledge for customers and enterprises. Journal of Applied Knowledge Management, 2(2), 132–148.Google Scholar

Copyright information

© Global Institute of Flexible Systems Management 2018

Authors and Affiliations

  1. 1.Department of Management StudiesIndian Institute of Technology DelhiHuaz Khas, New DelhiIndia

Personalised recommendations