Barriers to Reverse Logistics in the Computer Supply Chain Using Interpretive Structural Model

  • Syed Mithun Ali
  • Asraf Arafin
  • Md. Abdul Moktadir
  • Towfique Rahman
  • Nuzhat Zahan
Original Research

Abstract

Researchers and practitioners are paying attention to reverse logistics (RL) issues due to growing environmental concerns, competitive advantage, promising financial potential, legislative reasons and social responsibility. This study aims to examine the contextual relationship and interactions among barriers to implement RL practices in the computer supply chain of Bangladesh. We applied Interpretive Structural Modeling (ISM) technique to diagnose significant barriers and proposed a hierarchical framework for investigating the relationships among them. We also used MICMAC (Matriced’ Impacts Croisés Multiplication Appliquée á unClassement) analysis to classify the barriers based on the driving power and dependence among them. Seven barriers were finalized in the Bangladesh context based on the previous literature and professional feedback. The findings reveal that financial constraints along with the lack of interest from top management are the most influential barriers to RL for the computer supply chains of Bangladesh. The ISM-based analysis can provide managers with insights for developing strategies for implementing RL practices in the computer supply chain of Bangladesh.

Keywords

Barrier analysis Bangladesh Computer supply chain ISM Reverse logistics 

Notes

Compliance with Ethical Standards

Conflict of interest

No potential conflict of interest was reported by the authors.

References

  1. Abdulrahman, M. D., Gunasekaran, A., & Subramanian, N. (2014). Critical barriers in implementing reverse logistics in the Chinese manufacturing sectors. International Journal of Production Economics, 147, 460–471.  https://doi.org/10.1016/j.ijpe.2012.08.003.CrossRefGoogle Scholar
  2. Agrawal, S., Singh, R. K., & Murtaza, Q. (2015). A literature review and perspectives in reverse logistics. Resources, Conservation and Recycling, 97, 76–92.  https://doi.org/10.1016/j.resconrec.2015.02.009.CrossRefGoogle Scholar
  3. Ali, S. M., & Nakade, K. (2017). Optimal ordering policies in a multi-sourcing supply chain with supply and demand disruptions-a CVaR approach. International Journal of Logistics Systems and Management, 28(2), 180–199.CrossRefGoogle Scholar
  4. Ali, S. M., Rahman, M. H., Tumpa, T. J., Rifat, A. A. M., & Paul, S. K. (2018). Examining price and service competition among retailers in a supply chain under potential demand disruption. Journal of Retailing and Consumer Services, 40, 40–47.CrossRefGoogle Scholar
  5. Attri, R., Dev, N., & Sharma, V. (2013a). Interpretive structural modelling (ISM) approach: An overview. Research Journal of Management Sciences, 2(2), 3–8.Google Scholar
  6. Attri, R., Grover, S., Dev, N., & Kumar, D. (2013b). An ISM approach for modelling the enablers in the implementation of total productive maintenance (TPM). International Journal of Systems Assurance Engineering and Management, 4(4), 313–326.  https://doi.org/10.1007/s13198-012-0088-7.CrossRefGoogle Scholar
  7. Bernon, M., Rossi, S., & Cullen, J. (2010). Retail reverse logistics: A call and grounding framework for research. International Journal of Physical Distribution & Logistics Management, 41(5), 484–510.  https://doi.org/10.1108/09600031111138835.CrossRefGoogle Scholar
  8. Bing, X., Bloemhof-Ruwaard, J. M., & van der Vorst, J. G. (2014). Sustainable reverse logistics network design for household plastic waste. Flexible Services and Manufacturing Journal, 26(1–2), 119–142.  https://doi.org/10.1007/s10696-012-9149-0.CrossRefGoogle Scholar
  9. Bouzon, M., Govindan, K., & Rodriguez, C. M. T. (2016a). Evaluating barriers for reverse logistics implementation under a multiple stakeholders’ perspective analysis using grey decision making approach. Resources, Conservation and Recycling.  https://doi.org/10.1016/j.resconrec.2016.11.022.Google Scholar
  10. Bouzon, M., Govindan, K., Taboada, C. M., & Campos, L. M. S. (2016b). Identification and analysis of reverse logistics barriers using fuzzy Delphi method and AHP. Resources, Conservation and Recycling.  https://doi.org/10.1016/j.resconrec.2015.05.021.Google Scholar
  11. Çetin, A., Altekin, F. T., & Güvenç, S. (2014). Hybrid simulation-analytical modeling approaches for the reverse logistics network design of a third-party logistics provider. Computers & Industrial Engineering, 70, 74–89.  https://doi.org/10.1016/j.cie.2014.01.004.CrossRefGoogle Scholar
  12. Charan, P., Shankar, R., & Baisya, R. K. (2008). Analysis of interactions among the variables of supply chain performance measurement system implementation. Business Process Management Journal, 14, 512–529.  https://doi.org/10.1108/14637150810888055.CrossRefGoogle Scholar
  13. Debata, B. R., Sree, K., Patnaik, B., & Mahapatra, S. S. (2013). Evaluating medical tourism enablers with interpretive structural modeling. Benchmarking, 20(6), 716–743.  https://doi.org/10.1108/BIJ-10-2011-0079.CrossRefGoogle Scholar
  14. Dekker, R., Fleischmann, M., Inderfurth, K., & Van Wassenhove, L. N. (2004). Reverse logistics: Quantitative models for closed-loop supply chains. Interfaces.  https://doi.org/10.1007/978-3-540-24803-3_5.Google Scholar
  15. Dhanda, K. K., & Peters, A. A. (2005). Reverse logistics in the computer industry. International Journal of Computers Systems and Signals, 6(2), 57–67.Google Scholar
  16. Dubey, R., Gunasekaran, A., Sushil, & Singh, T. (2015). Building theory of sustainable manufacturing using total interpretive structural modelling. International Journal of Systems Science: Operations & Logistics, 2(4), 231–247.Google Scholar
  17. Ertas, A., Smith, M. W., Tate, D., Lawson, W. D., & Baturalp, T. B. (2016). Complexity of system maintainability analysis based on the interpretive structural modeling methodology: Transdisciplinary approach. Journal of Systems Science and Systems Engineering, 25(2), 254–268.CrossRefGoogle Scholar
  18. Flapper, S. D. P., Gayon, J. P., & Vercraene, S. (2012). Control of a production-inventory system with returns under imperfect advance return information. European Journal of Operational Research, 218(2), 392–400.  https://doi.org/10.1016/j.ejor.2011.10.051.CrossRefGoogle Scholar
  19. Fleischmann, M., Krikke, H. R., Dekker, R., & Flapper, S. D. P. (2000). A characterisation of logistics networks for product recovery. Omega, 28(6), 653–666.  https://doi.org/10.1016/S0305-0483(00)00022-0.CrossRefGoogle Scholar
  20. Fleischmann, M., van Nunen, J., Gräve, B., & Gapp, R. (2005). Reverse logistics—capturing value in the extended supply chain. In Supply chain management on demand: Strategies, technologies, applications (pp. 167–86).Google Scholar
  21. Garg, D., Luthra, S., & Haleem, A. (2016). An evaluation of barriers to implement reverse logistics: A case study of Indian fastener industry. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 10(8), 1484–1489.Google Scholar
  22. Ginter, P. M., & Starling, J. M. (1978). Reverse distribution channels for recycling. California Management Review, 20(3), 72–82. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=6412891&site=ehost-live&scope=site.
  23. Giridhar, A. K. D. G. (2015). Interpretive structural modeling approach for development of electric vehicle market in India. Procedia CIRP, 26, 40–45.  https://doi.org/10.1016/j.procir.2014.07.125.CrossRefGoogle Scholar
  24. Govindan, K., Kannan, D., Mathiyazhagan, K., Jabbour, A. B. L. D. S., & Jabbour, C. J. C. (2013). Analysing green supply chain management practices in Brazil’s electrical/electronics industry using interpretive structural modelling. International Journal of Environmental Studies, 70(4), 477–493.  https://doi.org/10.1080/00207233.2013.798494.CrossRefGoogle Scholar
  25. Govindan, K., Palaniappan, M., Zhu, Q., & Kannan, D. (2012). Production economics analysis of third party reverse logistics provider using interpretive structural modeling. International Journal of Production Economics, 140(1), 204–211.  https://doi.org/10.1016/j.ijpe.2012.01.043.CrossRefGoogle Scholar
  26. Grenchus, E., & Johnson, S. (2001). Improving environmental performance through reverse logistics at IBM, IEEE International Symposium on Electronics and the Environment, 236–240.http://www.scopus.com/inward/record.url?eid=2-s2.0-0034827687&partnerID=40.
  27. Guiltinan, J. P., & Nwokoye, N. G. (1975). Developing distribution channels and systems in the emerging recycling industries. International Journal of Physical Distribution & Logistics Management, 6(1), 28–38.  https://doi.org/10.1108/eb014359.CrossRefGoogle Scholar
  28. Hatefi, S. M., & Jolai, F. (2014). Robust and reliable forward–reverse logistics network design under demand uncertainty and facility disruptions. Applied Mathematical Modelling, 38(9), 2630–2647.CrossRefGoogle Scholar
  29. Hatefi, S. M., & Jolai, F. (2015). Reliable forward-reverse logistics network design under partial and complete facility disruptions. International Journal of Logistics Systems and Management, 20(3), 370–394.CrossRefGoogle Scholar
  30. Hossain S., Sultan S., Shahnaz F., Akram A. B., Nesa M., & Happell, J. (2010). Study on E-waste: Bangladesh Situation. (2010), Environment and Social Development Organization-ESDO, 1–36. https://www.env.go.jp/recycle/circul/venous_industry/pdf/env/h27/02_4.pdf.
  31. Hsu, C. C., Tan, K. C., & Zailani, S. H. M. (2016). Strategic orientations, sustainable supply chain initiatives, and reverse logistics: Empirical evidence from an emerging market. International Journal of Operations & Production Management.  https://doi.org/10.1108/IJOPM-06-2014-0252.Google Scholar
  32. Huscroft, J. R., Hazen, B. T., Hall, D. J., Skipper, J. B., & Hanna, J. B. (2014). Reverse logistics in the pharmaceuticals industry: A systemic analysis. The International Journal of Logistics Management, 25(2), 379–398.  https://doi.org/10.1108/IJLM-08-2012-0073.CrossRefGoogle Scholar
  33. Jakhar, S. K. (2014). Designing the green supply chain performance optimisation model. Global Journal of Flexible Systems Management, 15(3), 235–259.CrossRefGoogle Scholar
  34. Jayaraman, V., & Luo, Y. (2003). Creating competitive advantages through new value creation: A reverse logistics perspective. Academy of Management Perspectives, 21(2), 56–74.  https://doi.org/10.5465/amp.2007.25356512.CrossRefGoogle Scholar
  35. Jena, J., Jena, J., Sidharth, S., Sidharth, S., Thakur, L. S., Thakur, L. S., et al. (2017). Total interpretive structural modeling (TISM): Approach and application. Journal of Advances in Management Research, 14(2), 162–181.CrossRefGoogle Scholar
  36. Jindal, A., & Sangwan, K. S. (2011). Development of an interpretive structural model of barriers to reverse logistics implementation in Indian industry. In Glocalized solutions for sustainability in manufacturing (pp. 448–453). Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-642-19692-8.
  37. Kara, S. S., & Onut, S. (2010). Expert systems with applications a two-stage stochastic and robust programming approach to strategic planning of a reverse supply network: The case of paper recycling. Expert Systems with Applications, 37(9), 6129–6137.  https://doi.org/10.1016/j.eswa.2010.02.116.CrossRefGoogle Scholar
  38. Khalid, Z. B., Mufti, N. A., & Ahmad, Y. (2016). Identifying and modeling barriers to collaboration among auto-parts manufacturing SMEs. Pakistan Business Review, 18(2), 487–507.Google Scholar
  39. Khor, K. S., Udin, Z. M., Ramayah, T., Hazen, B. T., Udin, Z. M., & Hazen, B. T. (2016). Reverse logistics in Malaysia: The contingent role of institutional pressure. International Journal of Production Economics.  https://doi.org/10.1016/j.ijpe.2016.01.020.Google Scholar
  40. Kokkinaki, A., Dekker, R., & Koster, M. (2001). From e-trash to e-treasure: How value can be created by the new e-business models for reverse logistics (No. EI 2000-32/A). Retrieved from http://repub.eur.nl/res/pub/1662/.
  41. Kumar, S., & Putnam, V. (2008). Cradle to cradle: Reverse logistics strategies and opportunities across three industry sectors. International Journal of Production Economics, 115, 305–315.  https://doi.org/10.1016/j.ijpe.2007.11.015.CrossRefGoogle Scholar
  42. Laribi, L., & Dhouib, D. (2016). Barriers analysis for reverse logistics adoption in Tunisian enterprises. In 3rd International Conference on Logistics operations management (GOL), May 2016 (pp. 1–8). IEEE.Google Scholar
  43. Lehmann, S. (2015). Barriers to implementing reverse logistics in South Australian construction organisations. Supply Chain Management: An International Journal, 20(2), 179–204.  https://doi.org/10.1108/SCM-10-2014-0325.CrossRefGoogle Scholar
  44. Mangla, S., Madaan, J., & Chan, F. T. (2012). Analysis of performance focused variables for multi-objective flexible decision modeling approach of product recovery systems. Global Journal of Flexible Systems Management, 13(2), 77–86.  https://doi.org/10.1007/s40171-012-0007-4.CrossRefGoogle Scholar
  45. Mohanty, M., & Shankar, R. (2017). Modelling uncertainty in sustainable integrated logistics using Fuzzy-TISM. Transportation Research Part D: Transport and Environment, 53, 471–491.CrossRefGoogle Scholar
  46. Nagel, C., & Meyer, P. (1999). Caught between ecology and economy: End-of-life aspects of environmentally conscious manufacturing. Computers & Industrial Engineering, 36(4), 781–792.CrossRefGoogle Scholar
  47. Ngadiman, N. I. B., Moeinaddini, M., Ghazali, J. B., & Roslan, N. F. B. (2016). Reverse logistics in food industries: A case study in Malaysia. International Journal of Supply Chain Management, 5(3), 91–95.Google Scholar
  48. Nikolaou, I. E., Evangelinos, K. I., & Allan, S. (2013). A reverse logistics social responsibility evaluation framework based on the triple bottom line approach. Journal of Cleaner Production, 56, 173–184.  https://doi.org/10.1016/j.jclepro.2011.12.009.CrossRefGoogle Scholar
  49. Ongondo, F. O., Williams, I. D., & Cherrett, T. J. (2011). How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste Management, 31(4), 714–730.  https://doi.org/10.1016/j.wasman.2010.10.023.CrossRefGoogle Scholar
  50. Paper, R., & Rubio, S. (2014). Reverse logistics: Overview and challenges for supply chain management. International Journal of Engineering Business Management, 6, 12.  https://doi.org/10.5772/58827.CrossRefGoogle Scholar
  51. Paul, S. K., Sarker, R., & Essam, D. (2014). Real time disruption management for a two-stage batch production–inventory system with reliability considerations. European Journal of Operational Research, 237(1), 113–128.CrossRefGoogle Scholar
  52. Paul, S. K., Sarker, R., & Essam, D. (2017). A quantitative model for disruption mitigation in a supply chain. European Journal of Operational Research, 257(3), 881–895.CrossRefGoogle Scholar
  53. Poduval, P. S., & Pramod, V. R. (2015). Interpretive structural modeling (ISM) and its application in analyzing factors inhibiting implementation of total productive maintenance (TPM). International Journal of Quality & Reliability Management, 32(3), 308–331.CrossRefGoogle Scholar
  54. Ponce-Cueto, E., González Manteca, J. Á., & Carrasco-Gallego, R. (2010). Reverse logistics practices for recovering mobile phones in Spain. Supply Chain Forum: An International Journal, 12(2), 104–114.CrossRefGoogle Scholar
  55. Prahinski, C., & Kocabasoglu, C. (2006). Empirical research opportunities in reverse supply chains. Omega.  https://doi.org/10.1016/j.omega.2005.01.003.Google Scholar
  56. Prakash, C., & Barua, M. K. (2015). Fuzzy environment. Journal of Manufacturing Systems.  https://doi.org/10.1016/j.jmsy.2015.03.001.Google Scholar
  57. Prakash, C., & Barua, M. K. (2016). A multi-criteria decision-making approach for prioritizing reverse logistics adoption barriers under fuzzy environment: Case of Indian Electronics Industry. Global Business Review, 17(5), 1107–1124.  https://doi.org/10.1177/0972150916656667.CrossRefGoogle Scholar
  58. Purohit, J. K., Mittal, M. L., Mittal, S., & Sharma, M. K. (2016). Interpretive structural modeling-based framework for mass customisation enablers: An Indian footwear case. Production Planning & Control, 27(9), 774–786.  https://doi.org/10.1080/09537287.2016.1166275.CrossRefGoogle Scholar
  59. Raci, V., & Shankar, R. (2005). Analysis of interactions among the barriers of reverse logistics. Technological Forecasting and Social Change, 72(8), 1011–1029.  https://doi.org/10.1016/j.techfore.2004.07.002.CrossRefGoogle Scholar
  60. Rajesh, R. (2017). Technological capabilities and supply chain resilience of firms: A relational analysis using Total Interpretive Structural Modeling (TISM). Technological Forecasting and Social Change, 118, 161–169.CrossRefGoogle Scholar
  61. Rameezdeen, R., Chileshe, N., Hosseini, M. R., & Lehmann, S. (2016). A qualitative examination of major barriers in implementation of reverse logistics within the South Australian construction sector. International Journal of Construction Management, 16(3), 185–196.  https://doi.org/10.1016/j.rser.2016.09.067.CrossRefGoogle Scholar
  62. Ravi, V. (2014). Reverse logistics operations in automobile industry: A case study using SAP-LAP approach. Global Journal of Flexible Systems Management, 15(4), 295–303.CrossRefGoogle Scholar
  63. Ravi, V., Shankar, R., & Tiwari, M. K. (2005). Analyzing alternatives in reverse logistics for end-of-life computers: ANP and balanced scorecard approach. Computers & Industrial Engineering, 48(2), 327–356.  https://doi.org/10.1016/j.cie.2005.01.017.CrossRefGoogle Scholar
  64. Rick, G., & Liu, N. (2007). Using interpretive structural modeling to identify and quantify interactive risks. In OrlandoUSA: ASTIN Colloquium, (pp. 1–11).Google Scholar
  65. Rogers, D. S., & Tibben-Lembke, R. S. (1998). Going backwards: Reverse logistics trends and practices going backwards. Logistics Management, 2, 275.  https://doi.org/10.1006/jema.2001.0488.Google Scholar
  66. Rubio, S., Chamorro, A., & Miranda, F. J. (2008). Characteristics of the research on reverse logistics (1995–2005). International Journal of Production Research, 46(4), 1099–1120.  https://doi.org/10.1080/00207540600943977.CrossRefGoogle Scholar
  67. Sasikumar, P., & Kannan, G. (2008). Issues in reverse supply chains, part I: End-of-life product recovery and inventory management—an overview. International Journal of Sustainable Engineering, 1(3), 154–172.  https://doi.org/10.1080/19397030802433860.CrossRefGoogle Scholar
  68. Sharma, S. K., Panda, B. N., Mahapatra, S. S., & Sahu, S. (2011). Analysis of barriers for reverse logistics: An Indian perspective. International Journal of Modeling and Optimization, 1(2), 101–106.CrossRefGoogle Scholar
  69. Shibin, K. T., Gunasekaran, A., Papadopoulos, T., Dubey, R., Singh, M., & Wamba, S. F. (2016). Enablers and barriers of flexible green supply chain management: A total interpretive structural modeling approach. Global Journal of Flexible Systems Management, 17(2), 171–188.CrossRefGoogle Scholar
  70. Sindhwani, R., Sindhwani, R., Malhotra, V., & Malhotra, V. (2017). A framework to enhance agile manufacturing system: A total interpretive structural modelling (TISM) approach. Benchmarking: An International Journal, 24(2), 467–487.CrossRefGoogle Scholar
  71. Singh, A. K., & Sushil, (2013). Modeling enablers of TQM to improve airline performance. International Journal of Productivity and Performance Management, 62(3), 250–275.CrossRefGoogle Scholar
  72. Sorker, F., & Shukla, V. (2009). Reverse logistics of passenger cars in the UK—an examination, 1–8.Google Scholar
  73. Soti, A., Kaushal, O. P., & Shankar, R. (2011). Modelling the barriers of Six Sigma using interpretive structural modelling. International Journal of Business Excellence, 4(1), 94–110.CrossRefGoogle Scholar
  74. Starostka-Patyk, M., Zawada, M., Pabian, A., & Abed, M. (2013). Barriers to reverse logistics implementation in enterprises. In 2013 International conference on advanced logistics and transport (ICALT), (pp. 506–511). IEEE.Google Scholar
  75. Stock, J.R. (1992). Reverse logistics: White paper. Council of Logistics Management.Google Scholar
  76. Sushil. (2012). Interpreting the interpretive structural model. Global Journal of Flexible Systems Management, 13(2), 87–106.CrossRefGoogle Scholar
  77. Sushil. (2016). How to check correctness of total interpretive structural models? Annals of Operations Research.  https://doi.org/10.1007/s10479-016-2312-3.Google Scholar
  78. Sushil (2017) Modified ISM/TISM process with simultaneous transitivity checks for reducing direct pair comparisons. Global Journal of Flexible Systems Management, 18(4), 331–351.CrossRefGoogle Scholar
  79. Talib, F., Rahman, Z., & Qureshi, M. N. (2011). An interpretive structural modelling approach for modelling the practices of total quality management in service sector. International Journal of Modelling in Operations Management, 1(3), 223–250.CrossRefGoogle Scholar
  80. Taylor, P., Subramanian, N., Gunasekaran, A., & Abdulrahman, M. (2014). Factors for implementing end-of-life product reverse logistics in the Chinese manufacturing sector. International Journal of Sustainable Development and World Ecology.  https://doi.org/10.1080/13504509.2014.906003.Google Scholar
  81. Tibben-lembke, R. S., & Rogers, D. S. (2002). Differences between forward and reverse logistics in a retail environment. Supply Chain Management: An International Journal, 7(5), 271–282.  https://doi.org/10.1108/13598540210447719.CrossRefGoogle Scholar
  82. Venkatesh, V. G., Rathi, S., & Patwa, S. (2015). Analysis on supply chain risks in Indian apparel retail chains and proposal of risk prioritization model using Interpretive structural modeling. Journal of Retailing and Consumer Services, 26, 153–167.  https://doi.org/10.1016/j.jretconser.2015.06.001.CrossRefGoogle Scholar
  83. Verma, R. K. (2014). Implementation of interpretive structural model and topsis in manufacturing industries for supplier selection. Industrial Engineering Letters, 4(5), 1–9.Google Scholar
  84. Wang, X., Gaustad, G., Babbitt, C. W., & Richa, K. (2014). Resources, conservation and recycling economies of scale for future lithium-ion battery recycling infrastructure. Resources, Conservation and Recycling, 83, 53–62.  https://doi.org/10.1016/j.resconrec.2013.11.009.CrossRefGoogle Scholar
  85. Zhang, Tongzhu, Chu, Jiangwei, Wang, Xueping, Liu, Xianghai, & Cui, Pengfei. (2011). Development pattern and enhancing system of automotive components remanufacturing industry in China. Resources, Conservation and Recycling, 55(6), 613–622.CrossRefGoogle Scholar
  86. Zhu, Q., Sarkis, J., & Lai, K. (2014). Supply chain-based barriers for truck-engine remanufacturing in China. Transportation Research Part E, 68, 103–117.  https://doi.org/10.1016/j.tre.2014.05.001.CrossRefGoogle Scholar

Copyright information

© Global Institute of Flexible Systems Management 2017

Authors and Affiliations

  1. 1.Department of Industrial and Production EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
  2. 2.Department of Leather Products Engineering, Institute of Leather Engineering and TechnologyUniversity of DhakaDhakaBangladesh

Personalised recommendations