Skip to main content

Amelioration of sintering and multi-frequency dielectric properties of Mg3B2O6: A mechanism study of nickel substitution using DFT calculation

Abstract

With the support of density functional theory (DFT) calculation, the amelioration of sintering and dielectric properties of the Mg3B2O6 (MBO) ceramic was realized through the substitution of magnesium with nickel. The TE-mode cylindrical cavity method was used to measure the dielectric properties at different frequencies. The thermo-mechanical analysis and simultaneous thermal analysis were used to characterize the chemical and mechanical properties. The phase composition was determined through the X-ray diffraction (XRD) and Raman spectrum. The microstructure was investigated using the scanning electron microscopy (SEM). Magnesium substitution with nickel (4 mol%) could ionize the B-O bond of BO3, modify the vibration mode, improve the order degree, densify the microstructure, decrease the intrinsic densification temperature, and ameliorate the dielectric properties of the MBO ceramics. The maximum values were achieved for the ceramics with 4 mol% nickel and sintered at 1175 °C, that is, 97.2% for relative density, 72,600 GHz (10 GHz), 75,600 GHz (11.4 GHz), and 92,200 GHz (15 GHz) for Q × f, 7.1 (10 GHz), 7.01 (11.4 GHz), and 6.91 (15 GHz) for εr, and −56.3 ppm/°C for τf.

References

  1. [1]

    Zhou D, Pang LX, Wang DW, et al. High quality factor, ultralow sintering temperature Li6B4O9 microwave dielectric ceramics with ultralow density for antenna substrates. ACS Sustain Chem Eng 2018, 6: 11138–11143.

    CAS  Google Scholar 

  2. [2]

    Lei W, Zou ZY, Chen ZH, et al. Controllable τf value of Barium silicate microwave dielectric ceramics with different Ba/Si ratios. J Am Ceram Soc 2018, 101: 25–30.

    CAS  Google Scholar 

  3. [3]

    Lai YM, Tang XL, Huang X, et al. Phase composition, crystal structure and microwave dielectric properties of Mg2xCuxSiO4 ceramics. J Eur Ceram Soc 2018, 38: 1508–1516.

    CAS  Google Scholar 

  4. [4]

    Peng R, Li YX, Su H, et al. Experiment and calculation: The Li(Zn, Mn)PO4 solid solution ceramics with low dielectric constant, high quality factor, and low densification temperature. J Alloys Compd 2020, 842: 155709.

    CAS  Google Scholar 

  5. [5]

    Peng R, Li YX, Lu YC, et al. High-performance microwave dielectric composite ceramics sintered at low temperature without sintering-aids. J Alloys Compd 2020, 831: 154878.

    CAS  Google Scholar 

  6. [6]

    Lai YM, Su H, Wang G, et al. Improved microwave dielectric properties of CaMgSi2O6 ceramics through CuO doping. J Alloys Compd 2019, 772: 40–48.

    CAS  Google Scholar 

  7. [7]

    Došler U, Kržmanc MM, Jančar B, et al. A high-Q microwave dielectric material based on Mg3B2O6. J Am Ceram Soc 2010, 93: 3788–3792.

    Google Scholar 

  8. [8]

    Peng R, Li YX, Yu GL, et al. Effect of Co2+ substitution on the microwave dielectric properties of LiZnPO4 ceramics. J Electron Mater 2018, 47: 7281–7287.

    CAS  Google Scholar 

  9. [9]

    Peng R, Lu YC, Tao ZH, et al. Improved microwave dielectric properties and sintering behavior of LiZnPO4 ceramic by Ni2+-ion doping based on first-principle calculation and experiment. Ceram Int 2020, 46: 11021–11032.

    CAS  Google Scholar 

  10. [10]

    Chen GH, Hou MZ, Bao Y, et al. Silver co-firable Li2ZnTi3O8 microwave dielectric ceramics with LZB glass additive and TiO2 dopant. Int J Appl Ceram Technol 2013, 10: 492–501.

    CAS  Google Scholar 

  11. [11]

    Ma JL, Yang T, Fu ZF, et al. Low-fired Mg2SiO4-based dielectric ceramics with temperature stable for LTCC applications. J Alloys Compd 2017, 695: 3198–3201.

    CAS  Google Scholar 

  12. [12]

    Zhang J, Yue ZX, Luo Y, et al. Novel low-firing forsterite-based microwave dielectric for LTCC applications. J Am Ceram Soc 2016, 99: 1122–1124.

    CAS  Google Scholar 

  13. [13]

    Joseph T, Sebastian MT, Jantunen H, et al. Tape casting and dielectric properties of Sr2ZnSi2O7-based ceramic-glass composite for low-temperature co-fired ceramics applications. Int J Appl Ceram Technol 2011, 8: 854–864.

    CAS  Google Scholar 

  14. [14]

    Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 1990, 41: 7892–7895.

    CAS  Google Scholar 

  15. [15]

    Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 1976, 13: 5188–5192.

    Google Scholar 

  16. [16]

    Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev 1965, 140: A1133–A1138.

    Google Scholar 

  17. [17]

    Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev 1964, 136: B864–B871.

    Google Scholar 

  18. [18]

    Perdew JP, Ruzsinszky A, Csonka GI, et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 2008, 100: 136406.

    Google Scholar 

  19. [19]

    Agbaoye RO, Akinlami JO, Afolabi TA, et al. Unraveling the stable phase, high absorption coefficient, optical and mechanical properties of hybrid perovskite CH3NH3PbxMg1−xI3: Density functional approach. J Inorg Organomet Polym Mater 2020, 30: 299–309.

    CAS  Google Scholar 

  20. [20]

    Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Zeitschrift Für Kristallographie Cryst Mater 2005, 220: 567–570.

    CAS  Google Scholar 

  21. [21]

    Hakki BW, Coleman PD. A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans Microw Theory Tech 1960, 8: 402–410.

    Google Scholar 

  22. [22]

    Sebastian MT, Jantunen H. Low loss dielectric materials for LTCC applications: A review. Int Mater Rev 2008, 53: 57–90.

    CAS  Google Scholar 

  23. [23]

    Blackburn J. Solving the double eigenvalue problem: A study of mode matching in arbitrary-layer dielectric resonators. IEE Proc, Microw Antennas Propag 2006, 153: 447–455.

    Google Scholar 

  24. [24]

    Peng R, Su H, An D, et al. The sintering and dielectric properties modification of Li2MgSiO4 ceramic with Ni2+-ion doping based on calculation and experiment. J Mater Res Technol 2020, 9: 1344–1356.

    CAS  Google Scholar 

  25. [25]

    Valant M, Suvorov D, Pullar RC, et al. A mechanism for low-temperature sintering. J Eur Ceram Soc 2006, 26: 2777–2783.

    CAS  Google Scholar 

  26. [26]

    Peng R, Li YX, Su H, et al. The modification of sintering and microwave dielectric properties of Mn2+ doped LiZnPO4 ceramic. J Mater Res Technol 2020, 9: 4994–5006.

    CAS  Google Scholar 

  27. [27]

    Zhang Q, Tang XL, Zhong MF, et al. Bond characteristics and microwave dielectric properties of high-Q materials in Li-doped Zn3B2O6 systems. J Am Ceram Soc 2021, 104: 2102–2115.

    CAS  Google Scholar 

  28. [28]

    Park SG, Magyari-Köpe B, Nishi Y. Electronic correlation effects in reduced rutile TiO2 within the LDA + U method. Phys Rev B 2010, 82: 115109.

    Google Scholar 

  29. [29]

    Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst Sect A 1976, 32: 751–767.

    Google Scholar 

  30. [30]

    Kim DW, Kim IT, Park B, et al. Microwave dielectric properties of (1−x)Cu3Nb2O8-xZn3Nb2O8 ceramics. J Mater Res 2001, 16: 1465–1470.

    CAS  Google Scholar 

  31. [31]

    Ohashi M, Ogawa H, Kan A, et al. Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic. J Eur Ceram Soc 2005, 25: 2877–2881.

    CAS  Google Scholar 

  32. [32]

    Kim MH, Lim JB, Kim JC, et al. Synthesis of BaCu(B2O5) ceramics and their effect on the sintering temperature and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics. J Am Ceram Soc 2006, 89: 3124–3128.

    CAS  Google Scholar 

  33. [33]

    Wu XG, Wang H, Chen YH, et al. Synthesis and microwave dielectric properties of Zn3B2O6 ceramics for substrate application. J Am Ceram Soc 2012, 95: 1793–1795.

    CAS  Google Scholar 

  34. [34]

    Zhou DX, Sun F, Hu YX, et al. Low-temperature sintering and microwave dielectric properties of Mg3B2O6-LMZBS composites. J Mater Sci: Mater Electron 2012, 23: 981–989.

    CAS  Google Scholar 

  35. [35]

    Dou G, Guo M, Li YX, et al. The effect of LMBS glass on the microwave dielectric properties of the Mg3B2O6 for LTCC. J Mater Sci: Mater Electron 2015, 26: 4207–1211.

    CAS  Google Scholar 

  36. [36]

    Došler U, Kršmanc MM, Suvorov D. The synthesis and microwave dielectric properties of Mg3B2O6 and Mg2B2O5 ceramics. J Eur Ceram Soc 2010, 30: 413–118.

    Google Scholar 

  37. [37]

    Chen XY, Zhang WJ, Zalinska B, et al. Low sintering temperature microwave dielectric ceramics and composites based on Bi2O3-B2O3. J Am Ceram Soc 2012, 95: 3207–3213.

    CAS  Google Scholar 

  38. [38]

    Peng R, Li YX, Su H, et al. Effect of cobalt-doping on the dielectric properties and densification temperature of Li2MgSiO4 ceramic: Calculation and experiment. J Alloys Compd 2020, 827: 154162.

    CAS  Google Scholar 

  39. [39]

    Thomas D, Sebastian MT. Temperature-compensated LiMgPO4: A new glass-free low-temperature cofired ceramic. J Am Ceram Soc 2010, 93: 3828–3831.

    CAS  Google Scholar 

  40. [40]

    Cheng ZF, Hu X, Li Y, et al. Fabrication and microwave dielectric properties of Mg2SiO4-LiMgPO4-TiO2 composite ceramics. J Am Ceram Soc 2016, 99: 2688–2692.

    CAS  Google Scholar 

  41. [41]

    Dou G, Zhou DX, Gong SP, et al. Low temperature sintering and microwave dielectric properties of Li2ZnSiO4 ceramics with ZB glass. J Mater Sci: Mater Electron 2013, 24: 1601–1607.

    CAS  Google Scholar 

  42. [42]

    Sasikala TS, Pavithran C, Sebastian MT. Effect of lithium magnesium zinc borosilicate glass addition on densification temperature and dielectric properties of Mg2SiO4 ceramics. J Mater Sci: Mater Electron 2010, 21: 141–144.

    CAS  Google Scholar 

  43. [43]

    Umemura R, Ogawa H, Ohsato H, et al. Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic. J Eur Ceram Soc 2005, 25: 2865–2870.

    CAS  Google Scholar 

  44. [44]

    Guo M, Li YX, Dou G, et al. A new microwave dielectric ceramics for LTCC applications: Li2Mg2(WO4)3 ceramics. J Mater Sci: Mater Electron 2014, 25: 3712–3715.

    CAS  Google Scholar 

  45. [45]

    Zhou D, Pang LX, Wang H, et al. Phase transition, Raman spectra, infrared spectra, band gap and microwave dielectric properties of low temperature firing (Na0.5xBi1−0.5x)(MoxV1−x)O4 solid solution ceramics with scheelite structures. J Mater Chem 2011, 21: 18412.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61771104 and 62071106), the Jiangxi Innovative Talent Program, and the Sichuan Science and Technology Program (Grant No. 2021JDTD0026).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yuanxun Li or Hua Su.

Electronic Supplementary Material

40145_2021_515_MOESM1_ESM.pdf

Amelioration of sintering and multi-frequency dielectric properties of Mg3B2O6: A mechanism study of nickel substitution using DFT calculation

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peng, R., Lu, Y., Zhang, Q. et al. Amelioration of sintering and multi-frequency dielectric properties of Mg3B2O6: A mechanism study of nickel substitution using DFT calculation. J Adv Ceram 10, 1398–1407 (2021). https://doi.org/10.1007/s40145-021-0515-9

Download citation

Keywords

  • borate
  • density functional theory (DFT)
  • low dielectric constant
  • dielectric properties