Skip to main content

Optimized sintering and mechanical properties of Y-TZP ceramics for dental restorations by adding lithium disilicate glass ceramics

Abstract

The novel dental ceramics can be fabricated at lower temperatures when sol-gel derived lithium disilicate glass ceramics (LDGC) was used as an additive for yttria stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramics. The effect of LDGC on the sintering, mechanical, and translucent properties of Y-TZP ceramics was investigated in the present study. The results showed that the LDGC additive effectively improved the densification of Y-TZP at 1100 °C, which was much lower than the sintering temperature for pure Y-TZP. When sintered at 1100 °C, the Y-TZP with 1 wt% LDGC reached a relative density of 95.45%, and prossessed a flexural strength of 482.4 MPa and a fracture toughness of 5.94 MPa·m1/2. Moreover, its translucency was also improved. While, the addition of LDGC could result in an escape of yttrium atoms from the grain lattice of zirconia, which induced the tetragonal-monoclinic transformation of zirconia and abnormal growth of monoclinic grains. The escaped yttrium atoms diffused into the intergranular glass phase. The results indicated that the novel Y-TZP-LDGC ceramics has a great potential to be used for all-ceramic restorations.

References

  1. [1]

    Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: A review of the literature. J Prosthet Dent 2004, 92: 557–562.

    CAS  Article  Google Scholar 

  2. [2]

    Guazzato M, Albakry M, Ringer SP, et al. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent Mater 2004, 20: 449–456.

    CAS  Article  Google Scholar 

  3. [3]

    Conejo J, Nueesch R, Vonderheide M, et al. Clinical performance of all-ceramic dental restorations. Curr Oral Heal Rep 2017, 4: 112–123.

    Article  Google Scholar 

  4. [4]

    Kelly J, Benetti P. Ceramic materials in dentistry: Historical evolution and current practice. Aust Dent J 2011, 56: 84–96.

    Article  Google Scholar 

  5. [5]

    Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent Mater 2016, 32: 908–914.

    CAS  Article  Google Scholar 

  6. [6]

    Gautam C, Joyner J, Gautam A, et al. Zirconia based dental ceramics: Structure, mechanical properties, biocompatibility and applications. Dalton Trans 2016, 45: 19194–19215.

    CAS  Article  Google Scholar 

  7. [7]

    Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008, 24: 299–307.

    CAS  Article  Google Scholar 

  8. [8]

    Zhang F, Inokoshi M, Batuk M, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent Mater 2016, 32: e327–e337.

    CAS  Article  Google Scholar 

  9. [9]

    Zhu DB, Song YJ, Liang JS, et al. Progress of toughness in dental zirconia ceramics. J Inorg Mater 2018, 33: 363.

    Article  Google Scholar 

  10. [10]

    Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20: 1–25.

    CAS  Article  Google Scholar 

  11. [11]

    Miranda RBDP, Miranda WG Jr, Lazar DRRJr, et al. Effect of titania content and biomimetic coating on the mechanical properties of the Y-TZP/TiO2 composite. Dent Mater 2018, 34: 238–245.

    CAS  Article  Google Scholar 

  12. [12]

    Garvie RC, Hannink RH, Pascoe RT. Ceramic steel? Nature 1975, 258: 703–704.

    CAS  Article  Google Scholar 

  13. [13]

    Sun YH, Zhang YF, Guo JK. Microstructure and bending strength of 3Y-TZP ceramics by liquid-phase sintering with CAS addition. Ceram Int 2003, 29: 229–232.

    CAS  Article  Google Scholar 

  14. [14]

    Hannink RHJ, Kelly PM, Muddle BC. Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 2000, 83: 461–487.

    CAS  Article  Google Scholar 

  15. [15]

    Ho WF, Hsu HC, Peng YF, et al. Microstructure and mechanical properties of dental 3Y-TZP ceramics by using CaO-P2O5 glass as additive. Ceram Int 2011, 37: 1169–1174.

    CAS  Article  Google Scholar 

  16. [16]

    Soubelet CG, Albano MP, Conconi MS. Sintering, microstructure and hardness of Y-TZP-64S bioglass ceramics. Ceram Int 2018, 44: 4868–4874.

    CAS  Article  Google Scholar 

  17. [17]

    Soubelet CG, Albano MP. Mechanical properties and aging behaviour of Y-TZP with 64S bioglass additions for dental restorations. Adv Appl Ceram 2019, 118: 329–339.

    CAS  Article  Google Scholar 

  18. [18]

    De Paula Miranda RB, Borges R, Marchi J, et al. Microstructure and flexural strength of the Y:TZP/BG composite. Int J Appl Ceram Technol 2019, 16: 1979–1988.

    CAS  Article  Google Scholar 

  19. [19]

    Bellucci D, Sola A, Cannillo V. Bioactive glass/ZrO2 composites for orthopaedic applications. Biomed Mater 2013, 9: 015005.

    Article  CAS  Google Scholar 

  20. [20]

    Shi JL, Lu ZL, Guo JK. Model analysis of boundary residual stress and its effect on toughness in thin boundary layered yttria-stabilized tetragonal zirconia polycrystalline ceramics. J Mater Res 2000, 15: 727–732.

    CAS  Article  Google Scholar 

  21. [21]

    Bai Y, Peng L, Zhu QS. The preparation of the lithium disilicate glass-ceramic with high translucency. J Non Cryst Solids 2017, 457: 129–134.

    CAS  Article  Google Scholar 

  22. [22]

    Deng BH, Harris JT, Luo J. Atomic picture of crack propagation in Li2O-2SiO2 glass-ceramics revealed by molecular dynamics simulations. J Am Ceram Soc 2020, 103: 4304–4312.

    CAS  Article  Google Scholar 

  23. [23]

    Daguano KMB, Milesi MTB, Rodas ACD, et al.In vitro biocompatibility of new bioactive lithia-silica glass-ceramics. Mater Sci Eng: C 2019, 94: 117–125.

    CAS  Article  Google Scholar 

  24. [24]

    Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011, 32: 2757–2774.

    CAS  Article  Google Scholar 

  25. [25]

    Guazzato M, Albakry M, Ringer SP, et al. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater 2004, 20: 441–448.

    CAS  Article  Google Scholar 

  26. [26]

    Li J, Cui BC, Lin YH, et al. High strength and toughness in chromatic polymer-infiltrated zirconia ceramics. Dent Mater 2016, 32: 1555–1563.

    CAS  Article  Google Scholar 

  27. [27]

    Garvie RC, Nicholson PS. Phase analysis in zirconia systems. J Am Ceram Soc 1972, 55: 303–305.

    CAS  Article  Google Scholar 

  28. [28]

    Toraya H, Yoshimura M, Somiya S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. J Am Ceram Soc 1984, 67: C119–C121.

    CAS  Google Scholar 

  29. [29]

    Swain MV. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater 2009, 5: 1668–1677.

    CAS  Article  Google Scholar 

  30. [30]

    Habibe AF, Maeda LD, Souza RC, et al. Effect of bioglass additions on the sintering of Y-TZP bioceramics. Mater Sci Eng: C 2009, 29: 1959–1964.

    CAS  Article  Google Scholar 

  31. [31]

    Santos C, Souza RC, Habibe AF, et al. Mechanical properties of Y-TPZ ceramics obtained by liquid phase sintering using bioglass as additive. Mater Sci Eng: A 2008, 478: 257–263.

    Article  CAS  Google Scholar 

  32. [32]

    German RM, Suri P, Park SJ. Review: liquid phase sintering. J Mater Sci 2009, 44: 1–39.

    CAS  Article  Google Scholar 

  33. [33]

    Liu JW, Zhou XB, Tatarko P, et al. Fabrication, microstructure, and properties of SiC/Al4SiC4 multiphase ceramics via an in situ formed liquid phase sintering. J Adv Ceram 2020, 9: 193–203.

    CAS  Article  Google Scholar 

  34. [34]

    Tekeli S, Gürü M, Sağlam OE. Densification and grain-growth behavior of various amounts of SiO2 doped 8YSCZ/SiO2 composites. Mater Manuf Process 2007, 22: 710–714.

    CAS  Article  Google Scholar 

  35. [35]

    Bicalho LA, Baptista CARP, Souza RC, et al. Fatigue and subcritical crack growth in ZrO2-bioglass ceramics. Ceram Int 2013, 39: 2405–2414.

    CAS  Article  Google Scholar 

  36. [36]

    Drożdż E, Wyrwa J, Schneider K, et al. Electrical properties of silica-doped 3 mol% yttria-stabilized tetragonal zirconia. J Mater Sci 2017, 52: 674–685.

    Article  CAS  Google Scholar 

  37. [37]

    Stábile MF, Soubelet CG, Albano MP, et al. Effect of 64S bioglass addition on sintering kinetic, flexural strength and osteoblast cell response of yttria-partially stabilized zirconia ceramics. Int J Appl Ceram Technol 2019, 16: 517–530.

    Article  CAS  Google Scholar 

  38. [38]

    Sun ZQ, Li MS, Zhou YC. Recent progress on synthesis, multi-scale structure, and properties of Y-Si-O oxides. Int Mater Rev 2014, 59: 357–383.

    CAS  Article  Google Scholar 

  39. [39]

    Haritha AH, Rao RR. Sol-gel synthesis and phase evolution studies of yttrium silicates. Ceram Int 2019, 45: 24957–24964.

    CAS  Article  Google Scholar 

  40. [40]

    Ma QS, Cai LH. Fabrication and oxidation resistance of mullite/yttrium silicate multilayer coatings on C/SiC composites. J Adv Ceram 2017, 6: 360–367.

    CAS  Article  Google Scholar 

  41. [41]

    Sun ZQ, Zhou YC, Li MS. Effect of LiYO2 on the synthesis and pressureless sintering of Y2SiO5. J Mater Res 2008, 23: 732–736.

    CAS  Article  Google Scholar 

  42. [42]

    Shi JL, Ruan ML, Yen TS. Crystallite growth in yttriadoped superfine zirconia powders and their compacts: A comparison between Y-TZP and YSZ. Ceram Int 1996, 22: 137–142.

    CAS  Article  Google Scholar 

  43. [43]

    Camposilvan E, Leone R, Gremillard L, et al. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent Mater 2018, 34: 879–890.

    CAS  Article  Google Scholar 

  44. [44]

    Zhang F, van Meerbeek B, Vleugels J. Importance of tetragonal phase in high-translucent partially stabilized zirconia for dental restorations. Dent Mater 2020, 36: 491–500.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Shanghai Committee of Science and Technology, China (No. 17441904100).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jiancun Rao or Congqin Ning.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, K., Rao, J. & Ning, C. Optimized sintering and mechanical properties of Y-TZP ceramics for dental restorations by adding lithium disilicate glass ceramics. J Adv Ceram (2021). https://doi.org/10.1007/s40145-021-0507-9

Download citation

Keywords

  • yttria stabilized tetragonal zirconia polycrystalline (Y-TZP)
  • lithium disilicate glass ceramics (LDGC)
  • sintering
  • mechanical properties
  • dental restoration