Skip to main content

Enabling highly efficient and broadband electromagnetic wave absorption by tuning impedance match in high-entropy transition metal diborides (HE TMB2)


The advance in communication technology has triggered worldwide concern on electromagnetic wave pollution. To cope with this challenge, exploring high-performance electromagnetic (EM) wave absorbing materials with dielectric and magnetic losses coupling is urgently required. Of the EM wave absorbers, transition metal diborides (TMB2) possess excellent dielectric loss capability. However, akin to other single dielectric materials, poor impedance match leads to inferior performance. High-entropy engineering is expected to be effective in tailoring the balance between dielectric and magnetic losses through compositional design. Herein, three HE TMB2 powders with nominal equimolar TM including HE TMB2-1 (TM = Zr, Hf, Nb, Ta), HE TMB2-2 (TM = Ti, Zr, Hf, Nb, Ta), and HE TMB2-3 (TM = Cr, Zr, Hf, Nb, Ta) have been designed and prepared by one-step boro/carbothermal reduction. As a result of synergistic effects of strong attenuation capability and impedance match, HE TMB2-1 shows much improved performance with the optimal minimum reflection loss (RLmin) of −59.6 dB (8.48 GHz, 2.68 mm) and effective absorption bandwidth (EAB) of 7.6 GHz (2.3 mm). Most impressively, incorporating Cr in HE TMB2-3 greatly improves the impedance match over 1–18 GHz, thus achieving the RLmin of −56.2 dB (8.48 GHz, 2.63 mm) and the EAB of 11.0 GHz (2.2 mm), which is superior to most other EM wave absorbing materials. This work reveals that constructing high-entropy compounds, especially by incorporating magnetic elements, is effectual in tailoring the impedance match for highly conductive compounds, i.e., tuning electrical conductivity and boosting magnetic loss to realize highly efficient and broadband EM wave absorption with dielectric and magnetic coupling in single-phase materials.


  1. [1]

    Erogul O, Oztas E, Yildirim I, et al. Effects of electromagnetic radiation from a cellular phone on human sperm motility: An in vitro study. Arch Med Res 2006, 37: 840–843.

    Article  Google Scholar 

  2. [2]

    Jamshed MA, Héliot F, Brown TWC. A survey on electromagnetic risk assessment and evaluation mechanism for future wireless communication systems. IEEE J Electromagn RF Microwaves Med Biology 2020, 4: 24–36.

    Article  Google Scholar 

  3. [3]

    Raghvendra M, Aastha D, Priyanka M, et al. Recent progress in electromagnetic absorbing materials. In Advanced Materials for Electromagnetic Shielding: Fundamentals, Properties, and Applications. Jaroszewski M, Tomas S, Rane AV, Eds. New Jersey: John Wiley & Sons, 2018.

    Google Scholar 

  4. [4]

    Green M, Chen XB. Recent progress of nanomaterials for microwave absorption. J Materiomics 2019, 5: 503–541.

    Article  Google Scholar 

  5. [5]

    Wang C, Murugadoss V, Kong J, et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 2018, 140: 696–733.

    CAS  Article  Google Scholar 

  6. [6]

    Zhang WD, Zhang X, Zhu Q, et al. High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber. J Colloid Interface Sci 2021, 586: 457–468.

    CAS  Article  Google Scholar 

  7. [7]

    Qi XS, Xu JL, Hu Q, et al. Metal-free carbon nanotubes: synthesis, and enhanced intrinsic microwave absorption properties. Sci Rep 2016, 6: 28310.

    CAS  Article  Google Scholar 

  8. [8]

    Wang C, Han XJ, Xu P, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl Phys Lett 2011, 98: 072906.

    Article  CAS  Google Scholar 

  9. [9]

    Zhang P, Han XJ, Kang LL, et al. Synthesis and characterization of polyaniline nanoparticles with enhanced microwave absorption. RSC Adv 2013, 3: 12694.

    CAS  Article  Google Scholar 

  10. [10]

    Green M, Liu Z, Xiang P, et al. Doped, conductive SiO2 nanoparticles for large microwave absorption. Light Sci Appl 2018, 7: 87.

    Article  CAS  Google Scholar 

  11. [11]

    Chen YJ, Cao MS, Wang TH, et al. Microwave absorption properties of the ZnO nanowire-polyester composites. Appl Phys Lett 2004, 84: 3367–3369.

    CAS  Article  Google Scholar 

  12. [12]

    Su XL, Ning J, Jia Y, et al. Flower-like MoS2 nanospheres: a promising material with good microwave absorption property in the frequency range of 8.2-12.4 GHz. Nano 2018, 13: 1850084.

    CAS  Article  Google Scholar 

  13. [13]

    Yang HJ, Cao WQ, Zhang DQ, et al. NiO hierarchical nanorings on SiC: Enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl Mater Interfaces 2015, 7: 7073–7077.

    CAS  Article  Google Scholar 

  14. [14]

    Qing YC, Zhou WC, Luo F, et al. Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram Int 2016, 42: 16412–16416.

    CAS  Article  Google Scholar 

  15. [15]

    Zou Z, Xuan AG, Yan ZG, et al. Preparation of Fe3O4 particles from copper/iron ore cinder and their microwave absorption properties. Chem Eng Sci 2010, 65: 160–164.

    CAS  Article  Google Scholar 

  16. [16]

    Chen J, Wang ML, Meng PY, et al. Electromagnetic and microwave absorption properties of the core-shell structured C@BaMg0.2Co0.8TiFe10O19 nanoparticles. J Mater Sci: Mater Electron 2017, 28: 2100–2106.

    CAS  Google Scholar 

  17. [17]

    Deng LW, Ding L, Zhou KS, et al. Electromagnetic properties and microwave absorption of W-type hexagonal ferrites doped with La3+. J Magn Magn Mater 2011, 323: 1895–1898.

    CAS  Article  Google Scholar 

  18. [18]

    Liu QC, Zi ZF, Wu DJ, et al. Controllable synthesis and morphology-dependent microwave absorption properties of iron nanocrystals. J Mater Sci 2012, 47: 1033–1037.

    CAS  Article  Google Scholar 

  19. [19]

    Yang Y, Xu CL, Xia YX, et al. Synthesis and microwave absorption properties of FeCo nanoplates. J Alloys Compd 2010, 493: 549–552.

    CAS  Article  Google Scholar 

  20. [20]

    Liu QH, Cao Q, Zhao XB, et al. Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl Mater Interfaces 2015, 7: 4233–4240.

    CAS  Article  Google Scholar 

  21. [21]

    Wallace J. Broadband magnetic microwave absorbers: fundamental limitations. Trans Magn 1993, 29: 4209–4214.

    Article  Google Scholar 

  22. [22]

    Wu NN, Liu C, Xu DM, et al. Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustainable Chem Eng 2018, 6: 12471–12480.

    CAS  Article  Google Scholar 

  23. [23]

    He J, Liu S, Deng LW, et al. Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites. Appl Surf Sci 2020, 504: 144210.

    CAS  Article  Google Scholar 

  24. [24]

    Liu JL, Liang HS, Wu HJ. Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance. Compos A: Appl Sci Manuf 2020, 130: 105760.

    CAS  Article  Google Scholar 

  25. [25]

    Hou Y, Cheng LF, Zhang YN, et al. Enhanced flexibility and microwave absorption properties of HfC/SiC nanofiber mats. ACS Appl Mater Interfaces 2018, 10: 29876–29883.

    CAS  Article  Google Scholar 

  26. [26]

    Zhao B, Li Y, Zeng Q, et al. Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 2020, 16: 2003502.

    CAS  Article  Google Scholar 

  27. [27]

    Liu Y, Cui TT, Wu T, et al. Excellent microwave-absorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach. Nanotechnology 2016, 27: 165707.

    Article  CAS  Google Scholar 

  28. [28]

    Fahrenholtz W, Hilmas G, Talmy I, et al. Refractory diborides of zirconium and hafnium. J Am Ceram Soc 2007, 90: 1347–1364.

    CAS  Article  Google Scholar 

  29. [29]

    Zhang GJ, Ni DW, Zou J, et al. Inherent anisotropy in transition metal diborides and microstructure/property tailoring in ultra-high temperature ceramics—A review. J Eur Ceram Soc 2018, 38: 371–389.

    CAS  Article  Google Scholar 

  30. [30]

    Vajeeston P, Ravindran P, Ravi C, et al. Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides. Phys Rev B 2001, 63: 045115.

    Article  CAS  Google Scholar 

  31. [31]

    Zhou YC, Xiang HM, Feng ZH, et al. General trends in electronic structure, stability, chemical bonding and mechanical properties of ultrahigh temperature ceramics TMB2 (TM = transition metal). J Mater Sci Technol 2015, 31: 285–294.

    CAS  Article  Google Scholar 

  32. [32]

    Juretschke H, Steinitz R. Hall effect and electrical conductivity of transition-metal diborides. J Phys Chem Solids 1958, 4: 118–127.

    CAS  Article  Google Scholar 

  33. [33]

    Neelakanta P. Handbook of Electromagnetic Materials: Monolithic and Composite Versions and Their Applications. Boca Raton (USA): CRC Press, 1995.

    Google Scholar 

  34. [34]

    Jian X, Tian W, Li JY, et al. High-temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption. ACS Appl Mater Interfaces 2019, 11: 15869–15880.

    CAS  Article  Google Scholar 

  35. [35]

    Walter H. Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond. New York (USA): Dover Publications, 2012.

    Google Scholar 

  36. [36]

    Anderson P. Absence of diffusion in certain random lattices. Phys Rev 1958, 109: 1492–1505.

    CAS  Article  Google Scholar 

  37. [37]

    Manijeh R. Fundamentals of Solid State Engineering. New York (USA): Springer, 2006.

    Google Scholar 

  38. [38]

    Xiang HM, Xing Y, Dai FZ, et al. High-entropy ceramics: Present status, challenges, and a look forward. J Adv Ceram 2021, 10: 385–441.

    CAS  Article  Google Scholar 

  39. [39]

    Rost C, Sachet E, Borman T, et al. Entropy-stabilized oxides. Nat Commun 2015, 6: 8485.

    CAS  Article  Google Scholar 

  40. [40]

    Kao YF, Chen SK, Chen TJ, et al. Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J Alloys Compd 2011, 509: 1607–1614.

    CAS  Article  Google Scholar 

  41. [41]

    Castaing J, Costa P. Properties and Uses of Diborides. In Boron and Refractory Borides. Matkovich VI, Ed. Berlin: Springer, 2012: 390–412.

    Google Scholar 

  42. [42]

    Grechnev G, Fedorchenko A, Logosha A, et al. Electronic structure and magnetic properties of transition metal diborides. J Alloys Compd 2009, 481: 75–80.

    CAS  Article  Google Scholar 

  43. [43]

    Barnes R, Creel R. Chromium-like antiferromagnetic behavior of CrB2. Phys Lett A 1969, 29: 203–204.

    CAS  Article  Google Scholar 

  44. [44]

    Funahashi S, Hamaguchi Y, Tanaka T, et al. Helical magnetic structure in CrB2. Solid State Commun 1977, 23: 859–862.

    CAS  Article  Google Scholar 

  45. [45]

    Mabbs FE, Collison D. Electron Paramagnetic Resonance of d Transition Metal Compounds. Amsterdam (the Netherlands): Elsevier, 1992.

    Google Scholar 

  46. [46]

    Kolodiazhnyi T, Petric A. Analysis of point defects in polycrystalline BaTiO3 by electron paramagnetic resonance. J Phys Chem Solids 2003, 64: 953–960.

    CAS  Article  Google Scholar 

  47. [47]

    Zhou YC, Zhao B, Chen H, et al. Electromagnetic wave absorbing properties of TMCs (TM=Ti, Zr, Hf, Nb and Ta) and high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C. J Mater Sci Technol 2021, 74: 105–118.

    Article  Google Scholar 

  48. [48]

    Chen H, Zhao B, Zhao ZF, et al. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides. J Mater Sci Technol 2020, 47: 216–222.

    Article  Google Scholar 

  49. [49]

    Zhang WM, Zhao B, Xiang HM, et al. One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/borates (HE REB6/HE REBO3) composite powders. J Adv Ceram 2021, 10: 62–77.

    CAS  Article  Google Scholar 

  50. [50]

    Zhang WM, Zhao B, Ni N, et al. High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 2021, 87: 155–166.

    Article  Google Scholar 

  51. [51]

    Zhao ZF, Xiang HM, Dai FZ, et al. (TiZrHf)P2O7: An equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity. J Mater Sci Technol 2019, 35: 2227–2231.

    Article  Google Scholar 

  52. [52]

    Zhao ZF, Chen H, Xiang HM, et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications. J Adv Ceram 2020, 9: 303–311.

    CAS  Article  Google Scholar 

  53. [53]

    Sun YN, Xiang HM, Dai FZ, et al. Preparation and properties of CMAS resistant bixbyite structured high-entropy oxides RE2O3 (RE = Sm, Eu, Er, Lu, Y, and Yb): Promising environmental barrier coating materials for Al2O3f/Al2O3 composites. J Adv Ceram 2021, 10: 596–613.

    CAS  Article  Google Scholar 

  54. [54]

    Zhou JY, Zhang JY, Zhang F, et al. High-entropy carbide: A novel class of multicomponent ceramics. Ceram Int 2018, 44: 22014–22018.

    CAS  Article  Google Scholar 

  55. [55]

    Dong Y, Ren K, Lu YH, et al. High-entropy environmental barrier coating for the ceramic matrix composites. J Eur Ceram Soc 2019, 39: 2574–2579.

    CAS  Article  Google Scholar 

  56. [56]

    Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z Krist Cryst Mater 2005, 220: 567–570.

    CAS  Article  Google Scholar 

  57. [57]

    Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B Condens Matter 1990, 41: 7892–7895.

    CAS  Article  Google Scholar 

  58. [58]

    Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996, 77: 3865–3868.

    CAS  Article  Google Scholar 

  59. [59]

    Monkhorst HJ, Pack JD. Special points for brillouin-zone integrations. Phys Rev B 1976, 13: 5188–5192.

    Article  Google Scholar 

  60. [60]

    Pfrommer BG, Côté M, Louie SG, et al. Relaxation of crystals with the quasi-newton method. J Comput Phys 1997, 131: 233–240.

    CAS  Article  Google Scholar 

  61. [61]

    Segall M, Pickard C, Shah R, et al. Population analysis in plane wave electronic structure calculations. Mol Phys 1996, 89: 571–577.

    CAS  Article  Google Scholar 

  62. [62]

    Segall M, Shah R, Pickard C, et al. Population analysis of plane-wave electronic structure calculations of bulk materials. Phys Rev B Condens Matter 1996, 54: 16317–16320.

    CAS  Article  Google Scholar 

  63. [63]

    Joachim K. Polarized Electrons. Berlin (Germany): Springer, 1976.

    Google Scholar 

  64. [64]

    Gu JF, Zou J, Sun SK, et al. Dense and pure high-entropy metal diboride ceramics sintered from self-synthesized powders via boro/carbothermal reduction approach. Sci China Mater 2019, 62: 1898–1909.

    CAS  Article  Google Scholar 

  65. [65]

    Walton W. Feret’s statistical diameter as a measure of particle size. Nature 1948, 162: 329–330.

    Article  Google Scholar 

  66. [66]

    Kumar R, Mishra M, Sharma B, et al. Electronic structure and elastic properties of TiB2 and ZrB2. Comput Mater Sci 2012, 61: 150–157.

    CAS  Article  Google Scholar 

  67. [67]

    Charles K. Introduction to Solid State Physics. New York (USA): Wiley, 1996.

    Google Scholar 

  68. [68]

    Yao TK, Wang YC, Li H, et al. A universal trend of structural, mechanical and electronic properties in transition metal (M = V, Nb, and Ta) borides: First-principle calculations. Comput Mater Sci 2012, 65: 302–308.

    CAS  Article  Google Scholar 

  69. [69]

    Beruto D, Barco L, Belleri G. On the stability of refractory materials under industrial vacuum conditions: Al2O3, BeO, CaO, Cr2O3, MgO, SiO2, TiO2 systems. Ceramurgia Int 1975, 1: 87–93.

    CAS  Article  Google Scholar 

  70. [70]

    Abdel-Hamid AA, Hamar-Thibault S, Hamar R. Crystal morphology of the compound TiB2. J Cryst Growth 1985, 71: 744–750.

    CAS  Article  Google Scholar 

  71. [71]

    Tilley R. Understanding Solids: The Science of Materials. Chichester (UK): Wiley, 2013.

    Google Scholar 

  72. [72]

    Van Beek LKH. The Maxwell-Wagner-Sillars effect, describing apparent dielectric loss in inhomogeneous media. Physica 1960, 26: 66–68.

    Article  Google Scholar 

  73. [73]

    Pople JA. Molecular-orbital theory of diamagnetism. I. An approximate LCAO scheme. J Chem Phys 1962, 37: 53–59.

    Article  Google Scholar 

Download references


We gratefully acknowledge financial supports from the National Natural Science Foundation of China (Grant Nos. 51972089, 51672064, and U1435206).

Author information



Corresponding author

Correspondence to Yanchun Zhou.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Dai, FZ., Xiang, H. et al. Enabling highly efficient and broadband electromagnetic wave absorption by tuning impedance match in high-entropy transition metal diborides (HE TMB2). J Adv Ceram (2021).

Download citation


  • transition metal diboride (TMB2)
  • high-entropy (HE) ceramics
  • electronic structure
  • microwave absorption
  • dielectric and magnetic losses coupling