Skip to main content

Photocurrent density and electrical properties of Bi0.5Na0.5TiO3-BaNi0.5Nb0.5O3 ceramics

Abstract

In this work, the (1−x)Bi0.5Na0.5TiO3-xBaNi0.5Nb0.5O3 (BNT-BNN; 0.00 ⩽ x ⩽ 0.20) ceramics were prepared via a high-temperature solid-state method. The crystalline structures, photovoltaic effect, and electrical properties of the ceramics were investigated. According to X-ray diffraction, the system shows a single perovskite structure. The samples show the normal ferroelectric loops. With the increase of BNN content, the remnant polarization (Pr) and coercive field (Ec) decrease gradually. The optical band gap of the samples narrows from 3.10 to 2.27 eV. The conductive species of grains and grain boundaries in the ceramics are ascribed to the double ionized oxygen vacancies. The open-circuit voltage (Voc) of ∼15.7 V and short-circuit current (Jsc) of ∼1450 nA/cm2 are obtained in the 0.95BNT-0.05BNN ceramic under 1 sun illumination (AM1.5G, 100 mW/cm2). A larger Voc of 23 V and a higher Jsc of 5500 nA/cm2 are achieved at the poling field of 60 kV/cm under the same light conditions. The study shows this system has great application prospects in the photovoltaic field.

References

  1. [1]

    Nayak PK, Mahesh S, Snaith HJ, et al. Photovoltaic solar cell technologies: Analyzing the state of the art. Nat Rev Mater 2019, 4: 269–285.

    CAS  Article  Google Scholar 

  2. [2]

    Zhang KW, Wang SH, Yang Y. A one-structure-based piezo-tribo-pyro-photoelectric effects coupled nanogenerator for simultaneously scavenging mechanical, thermal, and solar energies. Adv Energy Mater 2017, 7: 1601852.

    Article  CAS  Google Scholar 

  3. [3]

    Ma N, Zhang KW, Yang Y. Photovoltaic-pyroelectric coupled effect induced electricity for self-powered photodetector system. Adv Mater 2017, 29: 1703694.

    Article  CAS  Google Scholar 

  4. [4]

    Ji Y, Zhang KW, Yang Y. A one-structure-based multieffects coupled nanogenerator for simultaneously scavenging thermal, solar, and mechanical energies. Adv Sci 2018, 5: 1700622.

    Article  CAS  Google Scholar 

  5. [5]

    Chen L, Luo BC, Chan NY, et al. Enhancement of photovoltaic properties with Nb modified (Bi, Na) TiO3-BaTiO3 ferroelectric ceramics. J Alloys Compd 2014, 587: 339–343.

    CAS  Article  Google Scholar 

  6. [6]

    Chen J, Pei W, Chen G, et al. Greatly enhanced photocurrent in inorganic perovskite [KNbO3]0.9[BaNi0.5Nb0.5O3-σ]0.1 ferroelectric thin-film solar cell. J Am Ceram Soc 2018, 101: 4892–4898.

    CAS  Article  Google Scholar 

  7. [7]

    Qi J, Ma N, Yang Y. Photovoltaic-pyroelectric coupled effect based nanogenerators for self-powered photodetector system. Adv Mater Interfaces 2018, 5: 1701189.

    Article  CAS  Google Scholar 

  8. [8]

    Song K, Zhao RD, Wang ZL, et al. Sensors: Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure sensing. Adv Mater 2019, 31: 1970257.

    Article  CAS  Google Scholar 

  9. [9]

    Song K, Ma N, Mishra YK, et al. Achieving light-induced ultrahigh pyroelectric charge density toward self-powered UV light detection. Adv Electron Mater 2019, 5: 1800413.

    Article  CAS  Google Scholar 

  10. [10]

    Choi T, Lee S, Choi YJ, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 2009, 324: 63–66.

    CAS  Article  Google Scholar 

  11. [11]

    Qi J, Ma N, Ma XC, et al. Enhanced photocurrent in BiFeO3 materials by coupling temperature and thermo-phototronic effects for self-powered ultraviolet photodetector system. ACS Appl Mater Interfaces 2018, 10: 13712–13719.

    CAS  Article  Google Scholar 

  12. [12]

    Zenkevich A, Matveyev Y, Maksimova K, et al. Giant bulk photovoltaic effect in thin ferroelectric BaTiO3 films. Phys Rev B 2014, 90: 161409.

    Article  CAS  Google Scholar 

  13. [13]

    Ma N, Yang Y. Enhanced self-powered UV photoresponse of ferroelectric BaTiO3 materials by pyroelectric effect. Nano Energy 2017, 40: 352–359.

    CAS  Article  Google Scholar 

  14. [14]

    Zhao K, Ouyang B, Yang Y. Enhancing photocurrent of radially polarized ferroelectric BaTiO3 materials by ferro-pyro-phototronic effect. iScience 2018, 3: 208–216.

    CAS  Article  Google Scholar 

  15. [15]

    Ma N, Yang Y. Boosted photocurrent in ferroelectric BaTiO3 materials via two dimensional planar-structured contact configurations. Nano Energy 2018, 50: 417–424.

    CAS  Article  Google Scholar 

  16. [16]

    Li DX, Shen ZY, Li ZP, et al. P-E hysteresis loop going slim in Ba0.3Sr0.7TiO3-modified Bi0.5Na0.5TiO3 ceramics for energy storage applications. J Adv Ceram 2020, 9: 183–192.

    CAS  Article  Google Scholar 

  17. [17]

    Zhang DL, Feng L, Huang WC, et al. Oxygen vacancy-induced ferromagnetism in Bi4NdTi3FeO15 multiferroic ceramics. J Appl Phys 2016, 120: 154105.

    Article  CAS  Google Scholar 

  18. [18]

    Roukos R, Zaiter N, Chaumont D. Relaxor behaviour and phase transition of perovskite ferroelectrics-type complex oxides (1−x)Na0.5Bi0.5TiO3-xCaTiO3 system. J Adv Ceram 2018, 7: 124–142.

    CAS  Article  Google Scholar 

  19. [19]

    Li P, Li W, Liu S, et al. Reduced leakage current, enhanced ferroelectric and dielectric properties of (La, Fe)-codoped Bi0.5Na0.5TiO3-based thin films. Ceram Int 2015, 41: S344–S348.

    CAS  Article  Google Scholar 

  20. [20]

    Li W, Zeng H, Hao J, et al. Enhanced dielectric and piezoelectric properties of Mn doped (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3-SrTiO3 thin films. J Alloys Compd 2013, 580: 157–161.

    CAS  Article  Google Scholar 

  21. [21]

    Gao Z, Zhang H, Liu Y, et al. An investigation on the dynamics of domain switching of Bi0.5Na0.5TiO3-based ferroelectric ceramics. Curr Appl Phys 2017, 17: 495–500.

    Article  Google Scholar 

  22. [22]

    Acharya SK, Kim TM, Hyung JH, et al. Ferroelectric and piezoelectric properties of lead-free Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-BaTiO3-thin films near the morphotropic phase boundary. J Alloys Compd 2014, 586: 549–554.

    CAS  Article  Google Scholar 

  23. [23]

    Grinberg I, Vincent D, Torres M, et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 2013, 503: 509–512.

    CAS  Article  Google Scholar 

  24. [24]

    Xiao H, Dong W, Guo Y, et al. Design for highly piezoelectric and visible/near-infrared photoresponsive perovskite oxides. Adv Mater 2019, 31: 1805802.

    Article  CAS  Google Scholar 

  25. [25]

    Pang D, Liang T, Deng Y, et al. Dielectric, ferroelectric, and photovoltaic properties of La-doped Bi(Ni2/3Ta1/3)O3-PbTiO3 ceramics. J Alloys Compd 2020, 815: 152191.

    CAS  Article  Google Scholar 

  26. [26]

    Han F, Zhang YJ, Yuan CL, et al. Photocurrent and dielectric/ferroelectric properties of KNbO3-BaFeO3−δ ferroelectric semiconductors. Ceram Int 2020, 46: 14567–14572.

    CAS  Article  Google Scholar 

  27. [27]

    Hue MM, Dung NQ, Trung NN, et al. Tunable magnetic properties of Bi0.5Na0.5TiO3 materials via solid solution of NiTiO3. Appl Phys A 2018, 124: 1–7.

    CAS  Article  Google Scholar 

  28. [28]

    Hung NT, Bac LH, Hoang NT, et al. Structural, optical, and magnetic properties of SrFeO3−δ-modified Bi0.5Na0.5TiO3 materials. Phys B: Condens Matter 2018, 531: 75–78.

    Article  CAS  Google Scholar 

  29. [29]

    Dung DD, Hung NT, Odkhuu D. Structure, optical and magnetic properties of new Bi0.5Na0.5TiO3-SrMnO3−δ solid solution materials. Sci Rep 2019, 9: 1–10.

    Google Scholar 

  30. [30]

    Dung DD, Hung NT. Structural, optical, and magnetic properties of the new (1−x)Bi0.5Na0.5TiO3 + xMgCoO3−δ solid solution system. J Supercond Nov Magn 2020, 33: 1249–1256.

    CAS  Article  Google Scholar 

  31. [31]

    Parija B, Badapanda T, Panigrahi S. Morphotropic phase boundary in BNT-BZT solid solution: A study by Raman spectroscopy and electromechanical parameters. J Ceram Process Res 2015, 16: 565–571.

    Google Scholar 

  32. [32]

    Hue MM, Dung NQ, Phuong LTK, et al. Magnetic properties of (1−x)Bi0.5Na0.5TiO3 + xMnTiO3 materials. J Magn Magn Mater 2019, 471: 164–168.

    CAS  Article  Google Scholar 

  33. [33]

    Huang YM, Shi DP, Liu LJ, et al. High-temperature impedance spectroscopy of BaFe0.5Nb0.5O3 ceramics doped with Bi0.5Na0.5TiO3. Appl Phys A 2014, 114: 891–896.

    CAS  Article  Google Scholar 

  34. [34]

    Chen L, Luo BC, Chan NY, et al. Enhancement of photovoltaic properties with Nb modified (Bi, Na)TiO3-BaTiO3 ferroelectric ceramics. J Alloys Compd 2014, 587: 339–343.

    CAS  Article  Google Scholar 

  35. [35]

    Huang T, Hu ZG, Xu GS, et al. Inherent optical behavior and structural variation in Na0.5Bi0.5TiO3-6%BaTiO3 revealed by temperature dependent Raman scattering and ultraviolet-visible transmittance. Appl Phys Lett 2014, 104: 111908.

    Article  CAS  Google Scholar 

  36. [36]

    Hajra S, Pradhani N, Choudhary R, et al. Fabrication, dielectric and electrical characteristics of 0.94(BI0.5Na0.5)TiO3-0.06BaTiO3 ceramics. Process Appl Ceram 2019, 13: 24–31.

    CAS  Article  Google Scholar 

  37. [37]

    Kreisel J, Glazer AM, Bouvier P, et al. High-pressure Raman study of a relaxor ferroelectric: The Na0.5Bi0.5TiO3 perovskite. Phys Rev B 2001, 63: 174106.

    Article  CAS  Google Scholar 

  38. [38]

    Niranjan MK, Karthik T, Asthana S, et al. Theoretical and experimental investigation of Raman modes, ferroelectric and dielectric properties of relaxor Na0.5Bi0.5TiO3. J Appl Phys 2013, 113: 194106.

    Article  CAS  Google Scholar 

  39. [39]

    Kreisel J, Glazer AM, Jones G, et al. An X-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: The (Na1−xKx)0.5Bi0.5TiO3 (0 ⩽ x ⩽ 1) solid solution. J Phys: Condens Matter 2000, 12: 3267–3280.

    CAS  Google Scholar 

  40. [40]

    Chen ZX, Yuan CL, Liu X, et al. Optical and electrical properties of ferroelectric Bi0.5Na0.5TiO3-NiTiO3 semiconductor ceramics. Mater Sci Semicond Process 2020, 115: 105089.

    CAS  Article  Google Scholar 

  41. [41]

    Han F, Zhang YJ, Yuan CL, et al. Impedance spectroscopy and photovoltaic effect of oxygen defect engineering on KNbO3 ferroelectric semiconductors. J Electron Mater 2020, 49: 6165–6174.

    CAS  Article  Google Scholar 

  42. [42]

    Bai W, Chen D, Huang Y, et al. Temperature-insensitive large strain response with a low hysteresis behavior in BNT-based ceramics. Ceram Int 2016, 42: 7669–7680.

    CAS  Article  Google Scholar 

  43. [43]

    Kim JS, Choi BC, Jeong JH, et al. Low-frequency dielectric dispersion and impedance spectroscopy of lead-free (Na0.5Bi0.5)TiO3(NBT) ferroelectric ceramics. J Korean Phy Soc 2009, 55: 879–883.

    CAS  Article  Google Scholar 

  44. [44]

    Zeb A, Hall DA, Milne SJ. Lead-free piezoelectric K0.5Bi0.5TiO3-Bi(Mg0.5Ti0.5)O3 ceramics with depolarisation temperatures up to ∼220 °C. J Mater Sci: Mater Electron 2015, 26: 9516–9521.

    CAS  Google Scholar 

  45. [45]

    Zeb A, Bai Y, Button T, et al. Temperature-stable relative permittivity from −70 °C to 500 °C in (Ba0.8Ca0.2)TiO3-Bi(Mg0.5Ti0.5)O3-NaNbO3 ceramics. J Am Ceram Soc 2014, 97: 2479–2483.

    CAS  Article  Google Scholar 

  46. [46]

    Hajra S, Sahoo S, Das R, et al. Structural, dielectric and impedance characteristics of (Bi0.5Na0.5)TiO3-BaTiO3 electronic system. J Alloys Compd 2018, 750: 507–514.

    CAS  Article  Google Scholar 

  47. [47]

    Yan X, Chen X, Li X, et al. Good electrical performances and impedance analysis of (1−x)KNN-xBMM lead-free ceramics. J Mater Sci: Mater El 2018, 29: 4538–4546.

    CAS  Google Scholar 

  48. [48]

    Liu L, Huang Y, Su C, et al. Space-charge relaxation and electrical conduction in K0.5Na0.5NbO3 at high temperatures. Appl Phys A 2011, 104: 1047–1051.

    CAS  Article  Google Scholar 

  49. [49]

    Hung NT, Bac LH, Hoang NT, et al. Structural, optical, and magnetic properties of SrFeO3−δ-modified Bi0.5Na0.5TiO3 materials. Phys B: Condens Matter 2018, 531: 75–78.

    Article  CAS  Google Scholar 

  50. [50]

    Dung DD, Thiet DV, Odkhuu D, et al. Room-temperature ferromagnetism in Fe-doped wide band gap ferroelectric Bi0.5K0.5TiO3 nanocrystals. Mater Lett 2015, 156: 129–133.

    CAS  Article  Google Scholar 

  51. [51]

    Cao L, Ding Z, Liu X, et al. Photovoltaic properties of Aurivillius Bi4NdTi3FeO15 ceramics with different orientations. J Alloys Compd 2019, 800: 134–139.

    CAS  Article  Google Scholar 

  52. [52]

    Wu L, Podpirka A, Spanier JE, et al. Ferroelectric, optical, and photovoltaic properties of morphotropic phase boundary compositions in the PbTiO3-BiFeO3-Bi(Ni1/2Ti1/2)O3 system. Chem Mater 2019, 31: 4184–4194.

    CAS  Article  Google Scholar 

  53. [53]

    Han F, Zhang YJ, Yuan CL, et al. Photocurrent and dielectric/ferroelectric properties of KNbO3-BaFeO3−δ ferroelectric semiconductors. Ceram Int 2020, 46: 14567–14572.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11464006) and Guangxi Key Laboratory of Information Materials (Grant No. 191026-Z).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Changlai Yuan or Jiang Wang or Guanghui Rao.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhong, M., Feng, Q., Yuan, C. et al. Photocurrent density and electrical properties of Bi0.5Na0.5TiO3-BaNi0.5Nb0.5O3 ceramics. J Adv Ceram (2021). https://doi.org/10.1007/s40145-021-0497-7

Download citation

Keywords

  • Bi0.5Na0.5TiO3-BaNi0.5Nb0.5O3
  • ferroelectric semiconductors
  • optical band gap
  • photovoltaic effect
  • impedance spectroscopy