Skip to main content

Garnet-type solid electrolyte: Advances of ionic transport performance and its application in all-solid-state batteries

Abstract

All-solid-state lithium batteries (ASSLBs), which use solid electrolytes instead of liquid ones, have become a hot research topic due to their high energy and power density, ability to solve battery safety issues, and capabilities to fulfill the increasing demand for energy storage in electric vehicles and smart grid applications. Garnet-type solid electrolytes have attracted considerable interest as they meet all the properties of an ideal solid electrolyte for ASSLBs. The garnet-type Li7La3Zr2O12 (LLZO) has excellent environmental stability; experiments and computational analyses showed that this solid electrolyte has a high lithium (Li) ionic conductivity (10−4–10−3 S·cm−1), an electrochemical window as wide as 6 V, stability against Li metal anode, and compatibility with most of the cathode materials. In this review, we present the fundamentals of garnet-type solid electrolytes, preparation methods, air stability, some strategies for improving the conductivity based on experimental and computational results, interfacial issues, and finally applications and challenges for future developments of LLZO solid electrolytes for ASSLBs.

References

  1. [1]

    Chagnes A, Swiatowska J. Lithium Process Chemistry: Resources, Extraction, Batteries, and Recycling. Amsterdam, the Netherlands: Elsevier, 2015.

    Google Scholar 

  2. [2]

    Scrosati B, Garche J. Lithium batteries: Status, prospects and future. J Power Sources 2010, 195: 2419–2430.

    Article  CAS  Google Scholar 

  3. [3]

    Lisbona D, Snee T. A review of hazards associated with primary lithium and lithium-ion batteries. Protection 2011, 89: 434–442.

    CAS  Google Scholar 

  4. [4]

    Mauger A, Julien CM. Critical review on lithium-ion batteries: Are they safe? Sustainable? Ionics 2017, 23: 1933–1947.

    Article  CAS  Google Scholar 

  5. [5]

    Yang Z, Zhang J, Kintner-Meyer MCW, et al. Electrochemical energy storage for green grid. Chem Rev 2011, 111: 3577–3613.

    Article  CAS  Google Scholar 

  6. [6]

    Janek J, Zeier WG. A solid future for battery development. Nat Energy, 2016, 1: 16141.

    Article  Google Scholar 

  7. [7]

    Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater 2010, 22: 587–603.

    Article  CAS  Google Scholar 

  8. [8]

    Famprikis T, Canepa P, Dawson JA, et al. Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater 2019, 18: 1278–1291.

    Article  CAS  Google Scholar 

  9. [9]

    Zha W, Li J, Yang D, et al. Research advances of inorganic solid electrolyte Li7La3Zr2O12. Materials China 2017, 36: 700–707.

    CAS  Google Scholar 

  10. [10]

    Thangadurai V, Weppner W. Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics 2006, 12: 81–92.

    Article  CAS  Google Scholar 

  11. [11]

    Knauth P. Inorganic solid Li ion conductors: An overview. Solid State Ionics 2009, 180: 911–916.

    Article  CAS  Google Scholar 

  12. [12]

    Wu MS, Xu B, Ouyang CY. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries. Chinese Phys B 2016, 25: 018206.

    Article  CAS  Google Scholar 

  13. [13]

    Wang YM, Song SF, Xu CH, et al. Development of solid-state electrolytes for sodium-ion battery-A short review. Nano Mater Sci 2019, 1: 91–100.

    Article  Google Scholar 

  14. [14]

    Deng Z, Mo YF, Ong SP. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries. NPG Asia Mater 2016, 8: e254.

    Article  CAS  Google Scholar 

  15. [15]

    Anderson NL, Pramod Vedula R, Schultz PA, et al. Defect level distributions and atomic relaxations induced by charge trapping in amorphous silica. Appl Phys Lett 2012, 100: 172908.

    Article  CAS  Google Scholar 

  16. [16]

    Fu J. Fast Li+ ion conducting glass-ceramics in the system Li2O-Al2O3-GeO2-P2O5. Solid State Ionics 1997, 104: 191–194.

    Article  CAS  Google Scholar 

  17. [17]

    Kim Y, Yoo A, Schmidt R, et al. Electrochemical stability of Li6.5La3Zr1.5M0.5O12 (M = Nb or Ta) against metalic lithium. Front Energy Res 2016, 4: 20.

    Article  CAS  Google Scholar 

  18. [18]

    Inaguma Y, Chen LQ, Itoh M, et al. High ionic conductivity in lithium lanthanum titanate. Solid State Commun 1993, 86: 689–693.

    Article  CAS  Google Scholar 

  19. [19]

    Seino Y, Ota T, Takada K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 2014, 7: 627–631.

    Article  CAS  Google Scholar 

  20. [20]

    Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nat Mater 2011, 10: 682–686.

    Article  CAS  Google Scholar 

  21. [21]

    Zhu YZ, He XF, Mo YF. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces 2015, 7: 23685–23693.

    Article  CAS  Google Scholar 

  22. [22]

    Zhu YZ, He XF, Mo YF. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A 2016, 4: 3253–3266.

    Article  CAS  Google Scholar 

  23. [23]

    Dong B, Yeandel SR, Goddard P, et al. Combined experimental and computational study of Ce-doped La3Zr2Li7O12 garnet solid-state electrolyte. Chem Mater 2020, 32: 215–223.

    Article  CAS  Google Scholar 

  24. [24]

    Thangadurai V, Kaack H, Weppner WJF. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J Am Cemm Soc 2003, 86: 437–440.

    Article  CAS  Google Scholar 

  25. [25]

    Thangadurai V, Pinzaru D, Narayanan S, et al. Fast solid-state Li ion conducting garnet-type structure metal oxides for energy storage. J Phys Chem Lett 2015, 6: 292–299.

    Article  CAS  Google Scholar 

  26. [26]

    Thangadurai V, Weppner W. Li6ALa2Nb2O12 (A=Ca, Sr, Ba): A new class of fast lithium ion conductors with garnet-like structure. J Am Cemm Soc 2005, 88: 411–118.

    Article  CAS  Google Scholar 

  27. [27]

    Abbattista F, Vallino M, Mazza D. Remarks on the binary systems Li2O-Me2O5 (Me=Nb, Ta). Mater Res Bull 1987, 22: 1019–1027.

    Article  CAS  Google Scholar 

  28. [28]

    Hyooma H, Hayashi K. Crystal structures of La3Li5M2O12 (M=Nb, Ta). Mater Res Bull 1988, 23: 1399–1407.

    Article  CAS  Google Scholar 

  29. [29]

    Ramakumar S, Deviannapoorani C, Dhivya L, et al. Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog Mater Sci 2017, 88: 325–411.

    Article  CAS  Google Scholar 

  30. [30]

    Thompson T, Wolfenstine J, Allen JL, et al. Tetragonal vs. cubic phase stability in Al-free Ta doped Li7La3Zr2O12 (LLZO). J Mater Chem A 2014, 2: 13431–13436.

    Article  CAS  Google Scholar 

  31. [31]

    Xu M, Park MS, Lee J M, et al. Mechanisms of Li+ transport in garnet-type cubic Li3+xLa3M2O12 (M = Te, Nb, Zr). Phys Rev B 2012, 85: 052301.

    Article  CAS  Google Scholar 

  32. [32]

    Miara LJ, Ong SP, Mo YF, et al. Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2x−y(La3−x,Rbx)(Zr3−yTay)O12 (0 ⩽ x ⩽ 0.375, 0 ⩽ y ⩽ 1) superionic conductor: A first principles investigation. Chem Mater 2013, 25: 3048–3055.

    Article  CAS  Google Scholar 

  33. [33]

    Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 2007, 46: 7778–7781.

    Article  CAS  Google Scholar 

  34. [34]

    Thangadurai V, Narayanan S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review. Chem Soc Rev 2014, 43: 4714.

    Article  CAS  Google Scholar 

  35. [35]

    Kotobuki M, Munakata H, Kanamura K, et al. Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode. J Electrochem Soc 2010, 157: A1076.

  36. [36]

    Dirican M, Yan CY, Zhu P, et al. Composite solid electrolytes for all-solid-state lithium batteries. Mater Sci Eng: R: Rep 2019, 136: 27–46.

    Article  Google Scholar 

  37. [37]

    Zhou WD, Wang SF, Li YT, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc 2016, 138: 9385–9388.

    Article  CAS  Google Scholar 

  38. [38]

    Zhong YR, Xie YJ, Hwang S, et al. A highly efficient all-solid-state lithium/electrolyte interface induced by an energetic reaction. Angew Chem Int Ed 2020, 59: 14003–14008.

    Article  CAS  Google Scholar 

  39. [39]

    Zhu YL, Wu S, Pan YL, et al. Reduced energy barrier for Li+ transport across grain boundaries with amorphous domains in LLZO thin films. Nanoscale Res Lett 2020, 15: 1–8.

    Article  CAS  Google Scholar 

  40. [40]

    Xia SX, Wu XS, Zhang ZC, et al. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 2019, 5: 753–785.

    Article  CAS  Google Scholar 

  41. [41]

    Wells AF. Structural Inorganic Chemistry. Oxford University Press, 2012.

  42. [42]

    Awaka J, Kijima N, Hayakawa H, et al. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J Solid State Chem 2009, 182: 2046–2052.

    Article  CAS  Google Scholar 

  43. [43]

    Bernstein N, Johannes MD, Hoang K. Origin of the structural phase transition in Li7La3Zr2O12. Phys Rev Lett 2012, 109: 205702.

    Article  CAS  Google Scholar 

  44. [44]

    Zhao Y, Yan JH, Cai WP, et al. Elastic and well-aligned ceramic LLZO nanofiber based electrolytes for solid-state lithium batteries. Energy Storage Mater 2019, 23: 306–313.

    Article  Google Scholar 

  45. [45]

    Aktaş S, Özkendir OM, Eker YR, et al. Study of the local structure and electrical properties of gallium substituted LLZO electrolyte materials. J Alloys Compd 2019, 792: 279–285.

    Article  CAS  Google Scholar 

  46. [46]

    Murugan R, Thangadurai V, Weppner W. Lattice parameter and sintering temperature dependence of bulk and grain-boundary conduction of garnet-like solid Li-electrolytes. J Electrochem Soc 2008, 155: A90.

    Article  CAS  Google Scholar 

  47. [47]

    Awaka J, Takashima A, Kataoka K, et al. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem Lett 2011, 40: 60–62.

    Article  CAS  Google Scholar 

  48. [48]

    Ohta S, Kobayashi T, Asaoka T. High lithium ionic conductivity in the garnet-type oxide Li7−xLa3(Zr2−x, Nbx)O12 (x = 0–2). J Power Sources 2011, 196: 3342–3345.

    Article  CAS  Google Scholar 

  49. [49]

    Rettenwander D, Geiger CA, Tribus M, et al. A synthesis and crystal chemical study of the fast ion conductor Li7−3xGaxLa3Zr2O12 with x = 0.08 to 0.84. Inorg Chem 2014, 53: 6264–6269.

    Article  CAS  Google Scholar 

  50. [50]

    Chen F, Li JY, Huang ZF, et al. Origin of the phase transition in lithium garnets. J Phys Chem C 2018, 122: 1963–1972.

    Article  CAS  Google Scholar 

  51. [51]

    Meier K, Laino T, Curioni A. Solid-state electrolytes: Revealing the mechanisms of Li-ion conduction in tetragonal and cubic LLZO by first-principles calculations. J Phys Chem C 2014, 118: 6668–6679.

    Article  CAS  Google Scholar 

  52. [52]

    Kazyak E, Chen KH, Wood KN, et al. Atomic layer deposition of the solid electrolyte garnet Li7La3Zr2O12. Chem Mater 2017, 29: 3785–3792.

    Article  CAS  Google Scholar 

  53. [53]

    Adams S, Rao RP. Ion transport and phase transition in Li7−xLa3(Zr2−xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25). J Mater Chem 2012, 22: 1426–1434.

    Article  CAS  Google Scholar 

  54. [54]

    O’Callaghan MP, Cussen EJ. Lithium dimer formation in the Li-conducting garnets Li5+xBaxLa3−xTa2O12 (0 < x < 1.6). Chem Commun 2007: 2048–2050.

  55. [55]

    Janani N, Deviannapoorani C, Dhivya L, et al. Influence of sintering additives on densification and Li+ conductivity of Al doped Li7La3Zr2O12 lithium garnet. RSC Adv 2014, 4: 51228–51238.

    Article  CAS  Google Scholar 

  56. [56]

    Larraz G, Orera A, Sanjuán ML. Cubic phases of garnet-type Li7La3Zr2O12: The role of hydration. J Mater Chem A 2013, 1: 11419.

    Article  CAS  Google Scholar 

  57. [57]

    Dhivya L, Murugan R. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+ conductivity of Li7La3Zr2O12 lithium garnet. ACS Appl Mater Interfaces 2014, 6: 17606–17615.

    Article  CAS  Google Scholar 

  58. [58]

    Hubaud AA, Schroeder DJ, Key B, et al. Low temperature stabilization of cubic (Li7−xAlx/3)La3Zr2O12: Role of aluminum during formation. J Mater Chem A 2013, 1: 8813.

    Article  CAS  Google Scholar 

  59. [59]

    Geiger CA, Alekseev E, Lazic B, et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: A fast lithium-ion conductor. Inorg Chem 2011, 50: 1089–1097.

    Article  CAS  Google Scholar 

  60. [60]

    Dumon A, Huang M, Shen Y, et al. High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet. Solid State Ionics 2013, 243: 36–41.

    Article  CAS  Google Scholar 

  61. [61]

    Ramakumar S, Satyanarayana L, Manorama SV, et al. Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. Phys Chem Chem Phys 2013, 15: 11327.

    Article  CAS  Google Scholar 

  62. [62]

    Rangasamy E, Wolfenstine J, Sakamoto J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics 2012, 206: 28–32.

    Article  CAS  Google Scholar 

  63. [63]

    Botros M, Djenadic R, Clemens O, et al. Field assisted sintering of fine-grained Li7-3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance. J Power Sources 2016, 309: 108–115.

    Article  CAS  Google Scholar 

  64. [64]

    Cheng L, Chen W, Kunz M, et al. Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS Appl Mater Interfaces 2015, 7: 2073–2081.

    Article  CAS  Google Scholar 

  65. [65]

    Zhang YH, Chen F, Tu R, et al. Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes. J Power Sources 2014, 268: 960–964.

    Article  CAS  Google Scholar 

  66. [66]

    Sakamoto J, Rangasamy E, Kim H, et al. Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12. Nanotechnology 2013, 24: 424005.

    Article  CAS  Google Scholar 

  67. [67]

    Li YQ, Wang Z, Cao Y, et al. W-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries. Electrochimica Acta 2015, 180: 37–42.

    Article  CAS  Google Scholar 

  68. [68]

    Kokal I, Somer M, Notten PHL, et al. Sol-gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure. Solid State Ionics 2011, 185: 42–46.

    Article  CAS  Google Scholar 

  69. [69]

    Tsai CL, Roddatis V, Chandran CV, et al. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS ApplMater Interfaces 2016, 8: 10617–10626.

    Article  CAS  Google Scholar 

  70. [70]

    Fu KK, Gong Y, Liu B, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci Adv 2017, 3: e1601659.

    Article  CAS  Google Scholar 

  71. [71]

    Yang T, Gordon ZD, Li Y, et al. Nanostructured garnet-type solid electrolytes for lithium batteries: Electrospinning synthesis of Li7La3Zr2O12 nanowires and particle size-dependent phase transformation. J Phys Chem C 2015, 119: 14947–14953.

    Article  CAS  Google Scholar 

  72. [72]

    Reinacher J, Berendts S, Janek J. Preparation and electrical properties of garnet-type Li6BaLa2Ta2O12 lithium solid electrolyte thin films prepared by pulsed laser deposition. Solid State Ionics 2014, 258: 1–7.

    Article  CAS  Google Scholar 

  73. [73]

    Djenadic R, Botros M, Benel C, et al. Nebulized spray pyrolysis of Al-doped Li7La3Zr2O12 solid electrolyte for battery applications. Solid State Ionics 2014, 263: 49–56.

    Article  CAS  Google Scholar 

  74. [74]

    Hu ZL, Liu HD, Ruan HB, et al. High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction. Ceram Int 2016, 42: 12156–12160.

    Article  CAS  Google Scholar 

  75. [75]

    El-Shinawi H, Paterson GW, MacLaren DA, et al. Low-temperature densification of Al-doped Li7La3Zr2O12: A reliable and controllable synthesis of fast-ion conducting garnets. J Mater Chem A 2017, 5: 319–329.

    Article  CAS  Google Scholar 

  76. [76]

    Chen RJ, Huang M, Huang WZ, et al. Sol-gel derived Li-La-Zr-O thin films as solid electrolytes for lithium-ion batteries. J Mater Chem A 2014, 2: 13277.

    Article  CAS  Google Scholar 

  77. [77]

    Baek SW, Lee JM, Kim TY, et al. Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries. J Power Sources 2014, 249: 197–206.

    Article  CAS  Google Scholar 

  78. [78]

    Kali R, Mukhopadhyay A. Spark plasma sintered/synthesized dense and nanostructured materials for solid-state Li-ion batteries: Overview and perspective. J Power Sources 2014, 247: 920–931.

    Article  CAS  Google Scholar 

  79. [79]

    Sun CW, Liu J, Gong YD, et al. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017, 33: 363–386.

    Article  CAS  Google Scholar 

  80. [80]

    Jin Y, McGinn PJ. Li7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery. J Power Sources 2013, 239: 326–331.

    Article  CAS  Google Scholar 

  81. [81]

    Galven C, Wu CH, Jarry A, et al. Interrelationships among gain size, surface composition air stability, and interfacial resistance of Al-substituted Li7La3Zr2O12 solid electrolytes. ACS Appl Mater Interfaces 2015, 7: 17649–17655.

    Article  CAS  Google Scholar 

  82. [82]

    Cheng L, Crumlin EJ, Chen W, et al. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys 2014, 16: 18294–18300.

    Article  CAS  Google Scholar 

  83. [83]

    Sharafi A, Yu S, Naguib M, et al. Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J Mater Chem A 2017, 5: 13475–13487.

    Article  CAS  Google Scholar 

  84. [84]

    Xia WH, Xu BY, Duan HN, et al. Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2. J Am Cemm Soc 2017, 100: 2832–2839.

    Article  CAS  Google Scholar 

  85. [85]

    Yow ZF, Oh YL, Gu WY, et al. Effect of Li+/H+ exchange in water treated Ta-doped Li7La3Zr2O12. Solid State Ionics 2016, 292: 122–129.

    Article  CAS  Google Scholar 

  86. [86]

    Ramaswamy M, Werner W. Solid Electrolytes for Advanced Applications. Springer Nature Switzerland, 2019.

  87. [87]

    Kobi S, Mukhopadhyay A. Structural (in)stability and spontaneous cracking of Li-La-zirconate cubic garnet upon exposure to ambient atmosphere. J Eur Ceram Soc 2018, 38: 4707–4718.

    Article  CAS  Google Scholar 

  88. [88]

    Xia WH, Xu BY, Duan HN, et al. Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles. ACS Appl Mater Interfaces 2016, 8: 5335–5342.

    Article  CAS  Google Scholar 

  89. [89]

    Li YT, Chen X, Dolocan A, et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J Am Chem Soc 2018, 140: 6448–6455.

    Article  CAS  Google Scholar 

  90. [90]

    Ruan YD, Lu Y, Huang X, et al. Acid induced conversion towards a robust and lithiophilic interface for Li-Li7La3Zr2O12 solid-state batteries. J Mater Chem A 2019, 7: 14565–14574.

    Article  CAS  Google Scholar 

  91. [91]

    Abdel-Basset DM, Mulmi S, El-Bana MS, et al. Structure, ionic conductivity, and dielectric properties of Li-rich garnet-type Li5+2xLa3Ta2−xSmxO12 (0 ⩽ x ⩽ 0.55) and their chemical stability. Inorg Chem 2017, 56: 8865–8877.

    Article  CAS  Google Scholar 

  92. [92]

    Li YT, Han JT, Wang CA, et al. Optimizing Li+ conductivity in a garnet framework. J Mater Chem 2012, 22: 15357.

    Article  CAS  Google Scholar 

  93. [93]

    Wu JF, Chen EY, Yu Y, et al. Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS Appl Mater Interfaces 2017, 9: 1542–1552.

    Article  CAS  Google Scholar 

  94. [94]

    Kihira Y, Ohta S, Imagawa H, et al. Effect of simultaneous substitution of alkali earth metals and Nb in Li7La3Zr2O12 on lithium-ion conductivity. ECS Electrochem Lett 2013, 2: A56–A59.

    Article  CAS  Google Scholar 

  95. [95]

    Rangasamy E, Wolfenstine J, Allen J, et al. The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7−xLa3−xAxZr2O12 garnet-based ceramic electrolyte. J Power Sources 2013, 230: 261–266.

    Article  CAS  Google Scholar 

  96. [96]

    Thangadurai V, Weppner W. Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12. J Solid State Chem 2006, 179: 974–984.

    Article  CAS  Google Scholar 

  97. [97]

    Xiang X, Chen F, Shen Q, et al. Effect of the lithium ion concentration on the lithium ion conductivity of Ga-doped LLZO. Mater Res Express 2019, 6: 085546.

    Article  CAS  Google Scholar 

  98. [98]

    Xiang X, Liu Y, Chen F, et al. Crystal structure and lithium ionic transport behavior of Li site doped Li7La3Zr2O12. J Eur Ceram Soc 2020, 40: 3065–3071.

    Article  CAS  Google Scholar 

  99. [99]

    Xie H, Alonso JA, Li YT, et al. Lithium distribution in aluminum-free cubic Li7La3Zr2O12. Chem Mater 2011, 23: 3587–3589.

    Article  CAS  Google Scholar 

  100. [100]

    Wagner R, Redhammer GJ, Rettenwander D, et al. Fast Li-ion-conducting garnet-related Li7−3xFexLa3Zr2O12 with uncommon I43d structure. Chem Mater 2016, 28: 5943–5951.

    Article  CAS  Google Scholar 

  101. [101]

    Rettenwander D, Redhammer G, Preishuber-Pflügl F, et al. Structural and electrochemical consequences of Al and Ga cosubstitution in Li7La3Zr2O12 solid electrolytes. Chem Mater 2016, 28: 2384–2392.

    Article  CAS  Google Scholar 

  102. [102]

    Nonemacher JF, Hüter C, Zheng H, et al. Microstructure and properties investigation of garnet structured Li7La3Zr2O12 as electrolyte for all-solid-state batteries. Solid State Ionics 2018, 321: 126–134.

    Article  CAS  Google Scholar 

  103. [103]

    Jiang Y, Zhu XH, Qin SY, et al. Investigation of Mg2+, Sc3+ and Zn2+ doping effects on densification and ionic conductivity of low-temperature sintered Li7La3Zr2O12 garnets. Solid State Ionics 2017, 300: 73–77.

    Article  CAS  Google Scholar 

  104. [104]

    Nemori H, Matsuda Y, Mitsuoka S, et al. Stability of garnet-type solid electrolyte LixLa3A2−yByO12 (A = Nb or Ta, B = Sc or Zr). Solid State Ionics 2015, 282: 7–12.

    Article  CAS  Google Scholar 

  105. [105]

    Tong X, Thangadurai V, Wachsman ED. Highly conductive Li garnets by a multielement doping strategy. Inorg Chem 2015, 54: 3600–3607.

    Article  CAS  Google Scholar 

  106. [106]

    Song SD, Chen BT, Ruan YL, et al. Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-ion batteries. Electrochimica Acta 2018, 270: 501–508.

    Article  CAS  Google Scholar 

  107. [107]

    Gupta A, Murugan R, Paranthaman MP, et al. Optimum lithium-ion conductivity in cubic Li7−xLa3Hf2−xTaxO12. J Power Sources 2012, 209: 184–188.

    Article  CAS  Google Scholar 

  108. [108]

    Dhivya L, Janani N, Palanivel B, et al. Li+ transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets. AIP Adv 2013, 3: 082115.

    Article  CAS  Google Scholar 

  109. [109]

    Deviannapoorani C, Dhivya L, Ramakumar S, et al. Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets. J Power Sources 2013, 240: 18–25.

    Article  CAS  Google Scholar 

  110. [110]

    Gai JL, Zhao EQ, Ma FR, et al. Improving the Li-ion conductivity and air stability of cubic Li7La3Zr2O12 by the co-doping of Nb, Y on the Zr site. J Eur Cemm Soc 2018, 38: 1673–1678.

    Article  CAS  Google Scholar 

  111. [111]

    Zhang YH, Deng JD, Hu DW, et al. Synergistic regulation of garnet-type Ta-doped Li7La3Zr2O12 solid electrolyte by Li+ concentration and Li+ transport channel size. Electrochimica Acta 2019, 296: 823–829.

    Article  CAS  Google Scholar 

  112. [112]

    Wu JF, Pang WK, Peterson VK, et al. Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS Appl Mater Interfaces 2017, 9: 12461–12468.

    Article  CAS  Google Scholar 

  113. [113]

    Buannic L, Orayech B, Lopez del Amo JM, et al. Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chem Mater 2017, 29: 1769–1778.

    Article  CAS  Google Scholar 

  114. [114]

    Wang DW, Zhong GM, Pang WK, et al. Toward understanding the lithium transport mechanism in garnet-type solid electrolytes: Li+ ion exchanges and their mobility at octahedral/tetrahedral sites. Chem Mater 2015, 27: 6650–6659.

    Article  CAS  Google Scholar 

  115. [115]

    Thompson T, Sharafi A, Johannes MD, et al. A tale of two sites: On defining the carrier concentration in garnet-based ionic conductors for advanced Li batteries. Adv Energy Mater 2015, 5: 1500096.

    Article  CAS  Google Scholar 

  116. [116]

    Kim S, Hirayama M, Taminato S, et al. Epitaxial growth and lithium ion conducntivity of lithium oxide garnet for an all solid-state battery electrolyte. RSC Dalton Trans 2013, 42: 13112–13117.

    Article  CAS  Google Scholar 

  117. [117]

    Liu K, Ma JT, Wang CG. Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr1.5O12 in alumina crucible. J Power Sources 2014, 260: 109–114.

    Article  CAS  Google Scholar 

  118. [118]

    Cussen EJ. Structure and ionic conductivity in lithium garnets. J Mater Chem 2010, 20: 5167.

    Article  CAS  Google Scholar 

  119. [119]

    Samson AJ, Hofstetter K, Bag S, et al. A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ Sci 2019, 12: 2957–2975.

    Article  CAS  Google Scholar 

  120. [120]

    Zeier WG. Structural limitations for optimizing garnet-type solid electrolytes: A perspective. Dalton Trans 2014, 43: 16133–16138.

    Article  CAS  Google Scholar 

  121. [121]

    Qin SY, Zhu XH, Jiang Y, et al. Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity. Appl Phys Lett 2018, 112: 113901.

    Article  CAS  Google Scholar 

  122. [122]

    Baral AK, Narayanan S, Ramezanipour F, et al. Evaluation of fundamental transport properties of Li-excess garnet-type Li5+2xLa3Ta2−xYxO12 (x = 0.25, 0.5 and 0.75) electrolytes using AC impedance and dielectric spectroscopy. Phys Chem Chem Phys 2014, 16: 11356.

    Article  CAS  Google Scholar 

  123. [123]

    Kuhn A, Narayanan S, Spencer L, et al. Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced 7Li spin-lattice relaxation NMR spectroscopy. Phys Rev B 2011, 83: 094302.

    Article  CAS  Google Scholar 

  124. [124]

    van Wüllen L, Echelmeyer T, Meyer HW, et al. The mechanism of Li-ion transport in the garnet Li5La3Nb2O12. Phys Chem Chem Phys 2007, 9: 3298–3303.

    Article  Google Scholar 

  125. [125]

    Adachi GY, Imanaka N, Aono H. Fast Li® conducting ceramic electrolytes. Adv Mater 1996, 8: 127–135.

    Article  CAS  Google Scholar 

  126. [126]

    Mukhopadhyay S, Thompson T, Sakamoto J, et al. Structure and stoichiometry in supervalent doped Li7La3Zr2O12. Chem Mater 2015, 27: 3658–3665.

    Article  CAS  Google Scholar 

  127. [127]

    Kotobuki M, Kanamura K, Sato Y, et al. Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. J Power Sources 2011, 196: 7750–7754.

    Article  CAS  Google Scholar 

  128. [128]

    Rettenwander D, Blaha P, Laskowski R, et al. DFT study of the role of Al3+ in the fast ion-conductor Li7−3xAl3+xLa3Zr2O12 garnet. Chem Mater 2014, 26: 2617–2623.

    Article  CAS  Google Scholar 

  129. [129]

    Rettenwander D, Langer JL, Schmidt W, et al. Site occupation of Ga and Al in stabilized cubic Li7-3(x+y)GaxAlyLa3Zr2O12 garnets as deduced from 27Al and 71Ga MAS NMR at ultrahigh magnetic fields. Chem Mater 2015, 27: 3135–3142.

    Article  CAS  Google Scholar 

  130. [130]

    Dash U, Sahoo S, Parashar SKS, et al. Effect of Li+ ion mobility on the grain boundary conductivity of Li2TiO3 nanoceramics. J Adv Ceram 2014, 3: 98–108.

    Article  CAS  Google Scholar 

  131. [131]

    Huang M, Liu T, Deng YF, et al. Effect of sintering temperature on structure and ionic conductivity of Li7−xLa3Zr2O12−0.5x (x = 0.5–0.7) ceramics. Solid State Ionics 2011, 204–205: 41–15.

    Article  CAS  Google Scholar 

  132. [132]

    García Daza FA, Bonilla MR, Llordés A, et al. Atomistic insight into ion transport and conductivity in Ga/Al-substituted Li7La3Zr2O12 solid electrolytes. ACS Appl Mater Interfaces 2019, 11: 753–765.

    Article  CAS  Google Scholar 

  133. [133]

    Wagner R, Redhammer GJ, Rettenwander D, et al. Crystal structure of garnet-related Li-ion conductor Li7-3xGaxLa3Zr2O12: Fast Li-ion conduction caused by a different cubic modification? Chem Mater 2016, 28: 1861–1871.

    Article  CAS  Google Scholar 

  134. [134]

    Nolan AM, Zhu Y, He X, et al. Computation-accelerated design of materials and interfaces for all-solid state lithium-ion batteries. Joule 2018, 2: 2016–2046.

    Article  CAS  Google Scholar 

  135. [135]

    Song SF, Kotobuki M, Zheng F, et al. Roles of alkaline earth ions in garnet-type superionic conductors. ChemElectroChem 2017, 4: 266–271.

    Article  CAS  Google Scholar 

  136. [136]

    Bachman JC, Muy S, Grimaud A, et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction. Chem Rev 2016, 116: 140–162.

    Article  CAS  Google Scholar 

  137. [137]

    Wang Y, Richards WD, Ong SP, et al. Design principles for solid-state lithium superionic conductors. Nat Mater 2015, 14: 1026–1031.

    Article  CAS  Google Scholar 

  138. [138]

    Zhang YH, Hu DW, Deng JD, et al. Li+ transport channel size governing Li+ migration in garnet-based all-solid-state lithium batteries. J Alloys Compd 2018, 767: 899–904.

    Article  CAS  Google Scholar 

  139. [139]

    Xiang X, Chen F, Yang WY, et al. Dual regulation of Li+ migration of Li6.4La3Zr1.4M0.6O12 (M = Sb, Ta, Nb) by bottleneck size and bond length of M-O. J Am Ceram Soc 2020, 103: 2483–2490.

    Article  CAS  Google Scholar 

  140. [140]

    Zhang YH, Chen F, Li JY, et al. Regulation mechanism of bottleneck size on Li+ migration activation energy in garnet-type Li7La3Zr2O12. Electrochimica Acta 2018, 261: 137–142.

    Article  CAS  Google Scholar 

  141. [141]

    Miara LJ, Richards WD, Wang YE, et al. First-principles studies on cation dopants and Electrolyte|Cathode interphases for lithium garnets. Chem Mater 2015, 27: 4040–4047.

    Article  CAS  Google Scholar 

  142. [142]

    Bernuy-Lopez C, Manalastas W, Lopez del Amo JM, et al. Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chem Mater 2014, 26: 3610–3617.

    Article  CAS  Google Scholar 

  143. [143]

    Zeier WG, Zhou SL, Lopez-Bermudez B, et al. Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li6MLa2Ta2O12. ACS Appl Mater Interfaces 2014, 6: 10900–10907.

    Article  CAS  Google Scholar 

  144. [144]

    Jalem R, Rushton MJD, Manalastas W, et al. Effects of gallium doping in garnet-type Li7La3Zr2O12 solid electrolytes. Chem Mater 2015, 27: 2821–2831.

    Article  CAS  Google Scholar 

  145. [145]

    Santosh KC, Longo RC, Xiong K, et al. Electrode-electrolyte interface for solid state Li-ion batteries: Point defects and mechanical strain. J Electrochem Soc 2014, 161: F3104–F3110.

    Article  CAS  Google Scholar 

  146. [146]

    Kim DH, Kim MY, Yang SH, et al. Fabrication and electrochemical characteristics of NCM-based all-solid lithium batteries using nano-grade garnet Al-LLZO powder. J Ind Eng Chem 2019, 71: 445–151.

    Article  CAS  Google Scholar 

  147. [147]

    Chen F, Zha WP, Yang DJ, et al. All-solid-state lithium battery fitted with polymer electrolyte enhanced by solid plasticizer and conductive ceramic filler. J Electrochem Soc 2018, 165: A3558–A3565.

    Article  CAS  Google Scholar 

  148. [148]

    Chen L, Li YT, Li SP, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From aceramic-in-polymera to apolymer-in-ceramica. Nano Energy 2018, 46: 176–184.

    Article  CAS  Google Scholar 

  149. [149]

    Luo W, Gong YH, Zhu YZ, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv Mater 2017, 29: 1606042.

    Article  CAS  Google Scholar 

  150. [150]

    Han XG, Gong YH, Fu K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 2017, 16: 572–579.

    Article  CAS  Google Scholar 

  151. [151]

    Van den Broek J, Afyon S, Rupp JLM. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors. Adv Energy Mater 2016, 6: 1600736.

    Article  CAS  Google Scholar 

  152. [152]

    Li YT, Chen X, Dolocan A, et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J Am Chem Soc 2018, 140: 6448–6455.

    Article  CAS  Google Scholar 

  153. [153]

    Duan J, Wu WY, Nolan AM, et al. Lithium-graphite paste: An interface compatible anode for solid-state batteries. Adv Mater 2019, 31: 1807243.

    Article  CAS  Google Scholar 

  154. [154]

    Fu KK, Gong YH, Dai JQ, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. PNAS 2016, 113: 7094–7099.

    Article  CAS  Google Scholar 

  155. [155]

    Zhang YH, Chen F, Yang DJ, et al. High capacity all-solid-state lithium battery using cathodes with three-dimensional Li+ conductive network. J Electrochem Soc 2017, 164: A1695–A1702.

    Article  CAS  Google Scholar 

  156. [156]

    Zhang YH, Chen F, Tu R, et al. Effect of lithium ion concentration on the microstructure evolution and its association with the ionic conductivity of cubic garnet-type nominal Li7Al0.25La3Zr2O12 solid electrolytes. Solid State Ionics 2016, 284: 53–60.

    Article  CAS  Google Scholar 

  157. [157]

    Cheng SHS, He KQ, Liu Y, et al. Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte. Electrochimica Acta 2017, 253: 430–438.

    Article  CAS  Google Scholar 

  158. [158]

    Zha WP, Chen F, Yang DJ, et al. High-performance Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide)/succinonitrile composite electrolyte for solid-state lithium batteries. J Power Sources 2018, 397: 87–94.

    Article  CAS  Google Scholar 

  159. [159]

    Yang CP, Xie H, Ping WW, et al. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv Mater 2019, 31: 1804815.

    Article  CAS  Google Scholar 

  160. [160]

    Ci JL, Cao C, Kuga S, et al. Improved performance of microbial fuel cell using esterified corncob cellulose nanofibers to fabricate air-cathode gas diffusion layer. ACS Sustain Chem Eng 2017, 5: 9614–9618.

    Article  CAS  Google Scholar 

  161. [161]

    Li YT, Xu BY, Xu HH, et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew Chem Int Ed 2017, 56: 753–756.

    Article  CAS  Google Scholar 

  162. [162]

    Zha W, Xu Y, Chen F, et al. Cathode/electrolyte interface engineering via wet coating and hot pressing for all-solid-state lithium battery. Solid State Ionics 2019, 330: 54–59.

    Article  CAS  Google Scholar 

  163. [163]

    Zhang JJ, Zang X, Wen HJ, et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J Mater Chem A 2017, 5: 4940–4948.

    Article  CAS  Google Scholar 

  164. [164]

    Yu S, Schmidt RD, Garcia-Mendez R, et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem Mater 2016, 28: 197–206.

    Article  CAS  Google Scholar 

  165. [165]

    Yu S, Siegel DJ. Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO). Chem Mater 2017, 29: 9639–9647.

    Article  CAS  Google Scholar 

  166. [166]

    Ohta S, Kobayashi T, Seki J, et al. Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J Power Sources 2012, 202: 332–335.

    Article  CAS  Google Scholar 

  167. [167]

    Ohta S, Seki J, Yagi Y, et al. Co-sinterable lithium garnettype oxide electrolyte with cathode for all-solid-state lithium ion battery. J Power Sources 2014, 265: 40–44.

    Article  CAS  Google Scholar 

  168. [168]

    Feng LL, Li L, Zhang YQ, et al. Low temperature synthesis and ion conductivity of Li7La3Zr2O12 garnets for solid state Li ion batteries. Solid State Ionics 2017, 310: 129–133.

    Article  CAS  Google Scholar 

  169. [169]

    Yan XF, Li ZB, Wen ZY, et al. Li/Li7La3Zr2O12/LiFePO4 all-solid-state battery with ultrathin nanoscale solid electrolyte. J Phys Chem C 2017, 121: 1431–1435.

    Article  CAS  Google Scholar 

  170. [170]

    Liu B, Zhang JG, Xu W. Advancing lithium metal batteries. Joule 2018, 2: 833–845.

    Article  CAS  Google Scholar 

  171. [171]

    Han XG, Gong YH, Fu K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 2017, 16: 572–579.

    Article  CAS  Google Scholar 

  172. [172]

    Wang CW, Gong YH, Liu BY, et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett 2017, 17: 565–571.

    Article  CAS  Google Scholar 

  173. [173]

    He MH, Cui ZH, Chen C, et al. Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries. J Mater Chem A 2018, 6: 11463–11470.

    Article  CAS  Google Scholar 

  174. [174]

    Zhao N, Fang R, He MH, et al. Cycle stability of lithium/garnet/lithium cells with different intermediate layers. Rare Metal 2018, 37: 473–479.

    Article  CAS  Google Scholar 

  175. [175]

    Richards WD, Miara LJ, Wang Y, et al. Interface stability in solid-state batteries. Chem Mater 2016, 28: 266–273.

    Article  CAS  Google Scholar 

  176. [176]

    Inada R, Yasuda S, Hosokawa H, et al. Formation and stability of interface between garnet-type Ta-doped Li7La3Zr2O12 solid electrolyte and lithium metal electrode. Batteries 2018, 4: 26.

    Article  CAS  Google Scholar 

  177. [177]

    Ma C, Cheng YQ, Yin KB, et al. Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett 2016, 16: 7030–7036.

    Article  CAS  Google Scholar 

  178. [178]

    Sharafi A, Kazyak E, Davis AL, et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem Mater 2017, 29: 7961–7968.

    Article  CAS  Google Scholar 

  179. [179]

    Fu JM, Yu PF, Zhang N, et al. In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte. Energy Environ Sci 2019, 12: 1404–1412.

    Article  CAS  Google Scholar 

  180. [180]

    Tian YS, Shi T, Richards WD, et al. Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy Environ Sci 2017, 10: 1150–1166.

    Article  CAS  Google Scholar 

  181. [181]

    Hakari T, Deguchi M, Mitsuhara K, et al. Structural and electronic-state changes of a sulfide solid electrolyte during the Li deinsertion-insertion processes. Chem Mater 2017, 29: 4768–4774.

    Article  CAS  Google Scholar 

  182. [182]

    Koerver R, Walther F, Aygün I, et al. Redox-active cathode interphases in solid-state batteries. J Mater Chem A 2017, 5: 22750–22760.

    Article  CAS  Google Scholar 

  183. [183]

    Xia SX, Lopez J, Liang C, et al. High-rate and large-capacity lithium metal anode enabled by volume conformal and self-healable composite polymer electrolyte. Adv Sci 2019, 6: 1802353.

    Article  CAS  Google Scholar 

  184. [184]

    Xiang X, Cao SY, Chen F, et al. Li/Li7La3Zr2O12 interfacial modification by constructing a layer of Cu-Li alloy. J Electrochem Soc 2019, 166: A3028–A3030.

    Article  CAS  Google Scholar 

  185. [185]

    Chen SJ, Zhang JX, Nie L, et al. All-solid-state batteries with a limited lithium metal anode at room temperature using a garnet-based electrolyte. Adv Mater 2021, 33: 2002325.

    Article  CAS  Google Scholar 

  186. [186]

    Rettenwander D, Wagner R, Reyer A, et al. Interface instability of Fe-stabilized Li7La3Zr2O12 versus Li metal. J Phys Chem C 2018, 122: 3780–3785.

    Article  CAS  Google Scholar 

  187. [187]

    Ma C, Cheng YQ, Yin KB, et al. Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett 2016, 16: 7030–7036.

    Article  CAS  Google Scholar 

  188. [188]

    Han FD, Westover AS, Yue J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy 2019, 4: 187–196.

    Article  CAS  Google Scholar 

  189. [189]

    Yonemoto F, Nishimura A, Motoyama M, et al. Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12. J Power Sources 2017, 343: 207–215.

    Article  CAS  Google Scholar 

  190. [190]

    Taylor NJ, Stangeland-Molo S, Haslam CG, et al. Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte. J Power Sources 2018, 396: 314–318.

    Article  CAS  Google Scholar 

  191. [191]

    Qian JF, Henderson WA, Xu W, et al. High rate and stable cycling of lithium metal anode. Nat Commun 2015, 6: 6362.

    Article  CAS  Google Scholar 

  192. [192]

    Cheng EJ, Sharafi A, Sakamoto J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochimica Acta 2017, 223: 85–91.

    Article  CAS  Google Scholar 

  193. [193]

    Raj R, Wolfenstine J. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries. J Power Sources 2017, 343: 119–126.

    Article  CAS  Google Scholar 

  194. [194]

    Ren YY, Shen Y, Lin YH, et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem Commun 2015, 57: 27–30.

    Article  CAS  Google Scholar 

  195. [195]

    Yang CP, Zhang L, Liu BY, et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. PNAS 2018, 115: 3770–3775.

    Article  CAS  Google Scholar 

  196. [196]

    Ishiguro K, Nemori H, Sunahiro S, et al. Ta-doped Li7La3Zr2O12 for water-stable lithium electrode of lithium-air batteries. J Electrochem Soc 2014, 161: A668–A674.

    Article  CAS  Google Scholar 

  197. [197]

    Sudo R, Nakata Y, Ishiguro K, et al. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ionics 2014, 262: 151–154.

    Article  CAS  Google Scholar 

  198. [198]

    Porz L, Swamy T, Sheldon BW, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater 2017, 7: 1701003.

    Article  CAS  Google Scholar 

  199. [199]

    Kerman K, Luntz A, Viswanathan V, et al. Practical challenges hindering the development of solid state Li ion batteries. J Electrochem Soc 2017, 164: A1731–A1744.

    Article  CAS  Google Scholar 

  200. [200]

    Han FD, Yue J, Zhu XY, et al. Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv Energy Mater 2018, 8: 1703644.

    Article  CAS  Google Scholar 

  201. [201]

    Albertus P, Babinec S, Litzelman S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat Energy 2018, 3: 16–21.

    Article  CAS  Google Scholar 

  202. [202]

    Deng Z, Wang ZB, Chu IH, et al. Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J Electrochem Soc 2015, 163: A67–A74.

    Article  CAS  Google Scholar 

  203. [203]

    Wang CW, Fu K, Kammampata SP, et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem Rev 2020, 120: 4257–4300.

    Article  CAS  Google Scholar 

  204. [204]

    Han FD, Zhu YZ, He XF, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater 2016, 6: 1501590.

    Article  CAS  Google Scholar 

  205. [205]

    Thompson T, Yu S, Williams L, et al. Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12. ACS Energy Lett 2017, 2: 462–468.

    Article  CAS  Google Scholar 

  206. [206]

    Nitta N, Wu FX, Lee JT, et al. Li-ion battery materials: Present and future. Mater Today 2015, 18: 252–264.

    Article  CAS  Google Scholar 

  207. [207]

    Miara L, Windmüller A, Tsai CL, et al. About the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature. ACS Appl Mater Interfaces 2016, 8: 26842–26850.

    Article  CAS  Google Scholar 

  208. [208]

    Ren YY, Liu T, Shen Y, et al. Chemical compatibility between garnet-like solid state electrolyte Li6.75La3Zr1.75Ta0.25O12 and major commercial lithium battery cathode materials. J Materiomics 2016, 2: 256–264.

    Article  Google Scholar 

  209. [209]

    Park K, Yu BC, Jung JW, et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem Mater 2016, 28: 8051–8059.

    Article  CAS  Google Scholar 

  210. [210]

    Ohta S, Komagata S, Seki J, et al. All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J Power Sources 2013, 238: 53–56.

    Article  CAS  Google Scholar 

  211. [211]

    Liu BY, Fu K, Gong YH, et al. Rapid thermal annealing of cathode-garnet interface toward high-temperature solid state batteries. Nano Lett 2017, 17: 4917–4923.

    Article  CAS  Google Scholar 

  212. [212]

    Zhang N, Long XH, Wang Z, et al. Mechanism study on the interfacial stability of a lithium garnet-type oxide electrolyte against cathode materials. ACS Appl Energy Mater 2018, 1: 5968–5976.

    Article  CAS  Google Scholar 

  213. [213]

    Lee JS, Heo K, Kim HS, et al. Blended cathode materials for all-solid-state Li-ion batteries. J Alloys Compd 2019, 781: 553–559.

    Article  CAS  Google Scholar 

  214. [214]

    Xiao YH, Miara LJ, Wang Y, et al. Computational screening of cathode coatings for solid-state batteries. Joule 2019, 3: 1252–1275.

    Article  CAS  Google Scholar 

  215. [215]

    Kim KJ, Rupp JLM. All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state lithium batteries. Energy Environ Sci 2020, 13: 4930–4945.

    Article  CAS  Google Scholar 

  216. [216]

    Lin DC, Liu W, Liu YY, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett 2016, 16: 459–465.

    Article  CAS  Google Scholar 

  217. [217]

    Sheng OW, Jin CB, Luo JM, et al. Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett 2018, 18: 3104–3112.

    Article  CAS  Google Scholar 

  218. [218]

    Xue ZG, He D, Xie XL. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A 2015, 3: 19218–19253.

    Article  CAS  Google Scholar 

  219. [219]

    Zhang JJ, Zhao JH, Yue LP, et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv Energy Mater 2015, 5: 1501082.

    Article  CAS  Google Scholar 

  220. [220]

    Rosso M, Brissot C, Teyssot A, et al. Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochimica Acta 2006, 51: 5334–5340.

    Article  CAS  Google Scholar 

  221. [221]

    Huo HY, Sun JY, chen C, et al. Flexible interfaces between Si anodes and composite electrolytes consisting of poly(propylene carbonates) and garnets for solid-state batteries. J Power Sources 2018, 383: 150–156.

    Article  CAS  Google Scholar 

  222. [222]

    Chen H, Jing MX, Han C, et al. A novel organic/inorganic composite solid electrolyte with functionalized layers for improved room-temperature rate performance of solid-state lithium battery. Int J Energy Res 2019, 43: 5912–5921.

    Article  CAS  Google Scholar 

  223. [223]

    Ma C, Feng YM, Xing FZ, et al. A borate decorated anion-immobilized solid polymer electrolyte for dendrite-free, long-life Li metal batteries. J Mater Chem A 2019, 7: 19970–19976.

    Article  CAS  Google Scholar 

  224. [224]

    Sun JQ, Li YG, Zhang QH, et al. A highly ionic conductive poly(methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires. Chem Eng J 2019, 375: 121922.

    Article  CAS  Google Scholar 

  225. [225]

    Tian GY, Zhao ZJ, Zinkevich T, et al. A crosslinked polyethyleneglycol solid electrolyte dissolving lithium bis(trifluoromethylsulfonyl)imide for rechargeable lithium batteries. ChemSusChem 2019, 12: 4708–4718.

    Article  CAS  Google Scholar 

  226. [226]

    Yan CY, Zhu P, Jia H, et al. Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries. Energy Storage Mater 2020, 26: 448–456.

    Article  Google Scholar 

  227. [227]

    He ZJ, Chen L, Zhang BC, et al. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries. J Power Sources 2018, 392: 232–238.

    Article  CAS  Google Scholar 

  228. [228]

    Li Z, Huang HM, Zhu JK, et al. Ionic conduction in composite polymer electrolytes: Case of PEO: Ga-LLZO composites. ACS Appl Mater Interfaces 2019, 11: 784–791.

    Article  CAS  Google Scholar 

  229. [229]

    Choi J-H, Lee C-H, Yu J-H, et al. Enhancement of ionic conducntivity of composite membranes for all-solid-state lithium rechargable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J Power Sources 2015, 274: 458–463.

    Article  CAS  Google Scholar 

  230. [230]

    He KQ, Chen CL, Fan R, et al. Polyethylene oxide/garnet-type Li6.4La3Zr1.4Nb0.6O12 composite electrolytes with improved electrochemical performance for solid state lithium rechargeable batteries. Compos Sci Technol 2019, 175: 28–34.

    Article  CAS  Google Scholar 

  231. [231]

    Guo HL, Sun H, Jiang ZL, et al. A new type of composite electrolyte with high performance for room-temperature solid-state lithium battery. J Mater Sci 2019, 54: 4874–4883.

    Article  CAS  Google Scholar 

  232. [232]

    Karthik K, Murugan R. Lithium garnet based free-standing solid polymer composite membrane for rechargeable lithium battery. J Solid State Electrochem 2018, 22: 2989–2998.

    Article  CAS  Google Scholar 

  233. [233]

    Jiang TL, He PG, Wang GX, et al. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv Energy Mater 2020, 10: 1903376.

    Article  CAS  Google Scholar 

  234. [234]

    Zhang JX, Zhao N, Zhang M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 2016, 28: 447–454.

    Article  CAS  Google Scholar 

  235. [235]

    Huang X, Liu C, Lu Y, et al. A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery. J Power Sources 2018, 382: 190–197.

    Article  CAS  Google Scholar 

  236. [236]

    Tao XY, Liu YY, Liu W, et al. Solid-state lithium-sulfur batteries operated at 37 $dgC with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett 2017, 17: 2967–2972.

    Article  CAS  Google Scholar 

  237. [237]

    Zhou C, Samson AJ, Hofstetter K, et al. A surfactant-assisted strategy to tailor Li-ion charge transfer interfacial resistance for scalable all-solid-state Li batteries. Sustainable Energy Fuels 2018, 2: 2165–2170.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (Nos. 2018YFB0905600 and 2017YFB0310400), the National Natural Science Foundation of China (No. 51972246), Fundamental Research Funds for the Central Universities in China, State Key Laboratory of Advanced Electromagnetic Engineering and Technology (Huazhong University of Science and Technology), the “111” project (No. B13035), and the Science and Technology Project of Global Energy Interconnection Research Institute Co., Ltd. (No. SGGR0000WLJS1801080). We would like to thank Asst. Prof. Teresita Padilla-Benavides (Wesleyan University, USA) for help with the language editing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fei Chen.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gonzalez Puente, P.M., Song, S., Cao, S. et al. Garnet-type solid electrolyte: Advances of ionic transport performance and its application in all-solid-state batteries. J Adv Ceram 10, 933–972 (2021). https://doi.org/10.1007/s40145-021-0489-7

Download citation

Keywords

  • Li7La3Zr2O12 (LLZO)
  • solid electrolytes
  • lithium ionic conductivity
  • lithium concentration
  • mobility of lithium-ion
  • air stability
  • solid-state batteries