Skip to main content

Crystal and electronic structure engineering of tin monoxide by external pressure

Abstract

Although tin monoxide (SnO) is an interesting compound due to its p-type conductivity, a widespread application of SnO has been limited by its narrow band gap of 0.7 eV. In this work, we theoretically investigate the structural and electronic properties of several SnO phases under high pressures through employing van der Waals (vdW) functionals. Our calculations reveal that a metastable SnO (β-SnO), which possesses space group P21/c and a wide band gap of 1.9 eV, is more stable than α-SnO at pressures higher than 80 GPa. Moreover, a stable (space group P2/c) and a metastable (space group Pnma) phases of SnO appear at pressures higher than 120 GPa. Energy and topological analyses show that P2/c-SnO has a high possibility to directly transform to β-SnO at around 120 GPa. Our work also reveals that β-SnO is a necessary intermediate state between high-pressure phase Pnma-SnO and low-pressure phase α-SnO for the phase transition path Pnma-SnO →β-SnO → α-SnO. Two phase transition analyses indicate that there is a high possibility to synthesize β-SnO under high-pressure conditions and have it remain stable under normal pressure. Finally, our study reveals that the conductive property of β-SnO can be engineered in a low-pressure range (0–9 GPa) through a semiconductor-to-metal transition, while maintaining transparency in the visible light range.

References

  1. Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 1997, 276: 1395–1397.

    CAS  Article  Google Scholar 

  2. Ogo Y, Hiramatsu H, Nomura K, et al. P-channel thin-film transistor using p-type oxide semiconductor, SnO. Appl Phys Lett 2008, 93: 032113.

    Article  CAS  Google Scholar 

  3. Hosono H, Ogo Y, Yanagi H, et al. Bipolar conduction in SnO thin films. Electrochem Solid-State Lett 2011, 14: H13.

    CAS  Article  Google Scholar 

  4. Allen JP, Scanlon DO, Piper LFJ, et al. Understanding the defect chemistry of tin monoxide. J Mater Chem C Mater 2013, 1: 8194–8208.

    CAS  Article  Google Scholar 

  5. Peng H, Bikowski A, Zakutayev A, et al. Pathway to oxide photovoltaics via band-structure engineering of SnO. Appl Phys Lett Mater 2016, 4: 106103.

    Google Scholar 

  6. Wang JJ, Umezawa N, Hosono H. Mixed valence tin oxides as novel van der Waals materials: Theoretical predictions and potential applications. Adv Energy Mater 2016, 6: 1501190.

    Article  CAS  Google Scholar 

  7. Oganov AR, Glass CW. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J Chem Phys 2006, 124: 244704.

    Article  CAS  Google Scholar 

  8. Oganov AR, Lyakhov AO, Valle M. How evolutionary crystal structure prediction works—and why. Acc Chem Res 2011, 44: 227–237.

    CAS  Article  Google Scholar 

  9. Lyakhov AO, Oganov AR, Stokes HT, et al. New developments in evolutionary structure prediction algorithm USPEX. Comput Phys Commun 2013, 184: 1172–1182.

    CAS  Article  Google Scholar 

  10. Walsh A, Watson GW. Electronic structures of rocksalt, litharge, and herzenbergite SnO by density functional theory. Phys Rev B 2004, 70: 235114.

    Article  CAS  Google Scholar 

  11. Zhang W, Oganov AR, Goncharov AF, et al. Unexpected stable stoichiometries of sodium chlorides. Science 2013, 342: 1502–1505.

    CAS  Article  Google Scholar 

  12. Zhang W, Oganov AR, Zhu Q, et al. Stability of numerous novel potassium chlorides at high pressure. Sci Rep 2016, 6: 26265.

    CAS  Article  Google Scholar 

  13. Dong X, Oganov AR, Goncharov AF, et al. A stable compound of helium and sodium at high pressure. Nat Chem 2017, 9: 440–445.

    CAS  Article  Google Scholar 

  14. Giefers H, Porsch F, Wortmann G. Structural study of SnO at high pressure. Physica B Condens Matter 2006, 373: 76–81.

    CAS  Article  Google Scholar 

  15. Govaerts K, Saniz R, Partoens B, et al. Van der Waals bonding and the quasiparticle band structure of SnO from first principles. Phys Rev B 2013, 87: 235210.

    Article  CAS  Google Scholar 

  16. Klimeš J, Bowler DR, Michaelides A. Chemical accuracy for the van der Waals density functional. J Phys: Condens Matter 2009, 22: 022201.

    Google Scholar 

  17. Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 2010, 132: 154104.

    Article  CAS  Google Scholar 

  18. Alexandre T, Matthias S. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 2009, 102: 073005.

    Article  CAS  Google Scholar 

  19. Alexandre T, Distasio RA, Roberto C, et al. Accurate and efficient method for many-body van der Waals interactions. Phys Rev Lett 2012, 108: 236402.

    Article  CAS  Google Scholar 

  20. Alberto A, Reilly AM, Distasio RA, et al. Long-range correlation energy calculated from coupled atomic response functions. J Chem Phys 2014, 140: 150901.

    Google Scholar 

  21. Peng HW, Yang ZH, Perdew JP, et al. Versatile van der Waals density functional based on a meta-generalized gradient approximation. Phys Rev X 2016, 6: 041005.

    Google Scholar 

  22. Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys 2003, 118: 8207.

    CAS  Article  Google Scholar 

  23. Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 2011, 32: 1456–1465.

    CAS  Article  Google Scholar 

  24. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996, 54: 11169–11186.

    CAS  Article  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996, 77: 3865–3868.

    CAS  Article  Google Scholar 

  26. Blöchl PE. Projector augmented-wave method. Phys Rev B 1994, 50: 17953–17979.

    Article  Google Scholar 

  27. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 1976, 13: 5188–5192.

    Article  Google Scholar 

  28. Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B 2008, 78: 134106.

    Article  CAS  Google Scholar 

  29. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993, 98: 5648–5652.

    CAS  Article  Google Scholar 

  30. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988, 37: 785–789.

    CAS  Article  Google Scholar 

  31. Eglitis RI, Popov AI. Systematic trends in (0 0 1) surface ab initio calculations of ABO3 perovskites. J Saudi Chem Soc 2018, 22: 459–468.

    CAS  Article  Google Scholar 

  32. Eglitis RI, Purans J, Gabrusenoks J, et al. Comparative ab initio calculations of ReO3, SrZrO3, BaZrO3, PbZrO3 and CaZrO3 (001) surfaces. Crystals 2020, 10: 745.

    CAS  Article  Google Scholar 

  33. Bučko T, Lebègue S, Gould T, et al. Many-body dispersion corrections for periodic systems: An efficient reciprocal space implementation. J Phys: Condens Matter 2016, 28: 045201.

    Google Scholar 

  34. Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 2006, 27: 1787–1799.

    CAS  Article  Google Scholar 

  35. Lyakhov AO, Oganov AR. Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO2. Phys Rev B 2011, 84: 092103.

    Article  CAS  Google Scholar 

  36. Yu SY, Jia XJ, Frapper G, et al. Pressure-driven formation and stabilization of superconductive chromium hydrides. Sci Rep 2015, 5: 17764.

    CAS  Article  Google Scholar 

  37. Wang JJ, Hanzawa K, Hiramatsu H, et al. Exploration of stable strontium phosphide-based electrides: Theoretical structure prediction and experimental validation. J Am Chem Soc 2017, 139: 15668–15680.

    CAS  Article  Google Scholar 

  38. Blatov VA, Shevchenko AP, Proserpio DM. Applied topological analysis of crystal structures with the program package ToposPro. Cryst Growth Des 2014, 14: 3576–3586.

    CAS  Article  Google Scholar 

  39. Michael OK, Peskov MA, Ramsden SJ, et al. The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc Chem Res 2008, 41: 1782–1789.

    Article  CAS  Google Scholar 

  40. Blatov VA. Topological relations between three-dimensional periodic nets. I. Uninodal nets. Acta Crystallogr A 2007, 63: 329–343.

    CAS  Article  Google Scholar 

  41. Blatov VA, Golov AA, Yang C, et al. Network topological model of reconstructive solid-state transformations. Sci Rep 2019, 9: 6007.

    Article  CAS  Google Scholar 

  42. Wang V, Xu N, Liu JC, et al. VASPKIT: A pre- and post-processing program for VASP code. Cond mat 2019:1908.08269.

  43. Saha S, Sinha TP, Mookerjee A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3. Phys Rev B 2000, 62: 8828–8834.

    CAS  Article  Google Scholar 

  44. Maintz S, Deringer VL, Tchougreeff AL, et al. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT. J Comput Chem 2016, 37: 1030–1035.

    CAS  Article  Google Scholar 

  45. Dion M, Rydberg H, Schroder E, et al. Van der Waals density functional for general geometries. Phys Rev Lett 2004, 92: 246401.

    CAS  Article  Google Scholar 

  46. Klimes J, Bowler DR, Michaelides A. Van der Waals density functionals applied to solids. Phys Rev B 2011, 83: 195131.

    Article  CAS  Google Scholar 

  47. Koch E, Fischer W. Types of sphere packings for crystallographic point groups, rod groups and layer groups. Z Kristallogr 1978, 148: 107–152.

    Article  Google Scholar 

  48. Blatov VA, Proserpio DM. Topological relations between three-periodic nets. II. Binodal nets. Acta Cryst 2009, 65: 202–212.

    CAS  Article  Google Scholar 

  49. Shao G, Jiang JP, Jiang MJ, et al. Polymer-derived SiBCN ceramic pressure sensor with excellent sensing performance. J Adv Ceram 2020, 9: 374–379.

    CAS  Article  Google Scholar 

  50. Tauc J. Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 1968, 3: 37–46.

    CAS  Article  Google Scholar 

  51. Arai T, Iimura S, Kim J, et al. Chemical design and example of transparent bipolar semiconductors. J Am Chem Soc 2017, 139: 17175–17180.

    CAS  Article  Google Scholar 

  52. Wang F, Tan MP, Li C, et al. Unusual pressure-induced electronic structure evolution in organometal halide perovskite predicted from first-principles. Org Electron 2019, 67: 89–94.

    CAS  Article  Google Scholar 

  53. Lu Y, Zhu SC, Huang E, et al. Pressure-driven band gap engineering in ion-conducting semiconductor silver orthophosphate. J Mater Chem A 2019, 7: 4451–4458.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51872242) and the Fundamental Research Funds for the Central Universities (Grant No. D5000200142). Vladislav A. BLATOV thanks the Russian Science Foundation (Grant No. 16-13-10158) for support of developing the network topological model. Artem R. OGANOV thanks the Russian Science Foundation (Grant No. 19-72-30043).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Junjie Wang.

Electronic Supplementary Material

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, K., Wang, J., Blatov, V.A. et al. Crystal and electronic structure engineering of tin monoxide by external pressure. J Adv Ceram 10, 565–577 (2021). https://doi.org/10.1007/s40145-021-0458-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40145-021-0458-1

Keywords

  • tin monoxide
  • van der Waals (vdW)
  • topological relationship
  • phase transition
  • band gap