Corrosion resistance of non-stoichiometric gadolinium zirconate fabricated by laser-enhanced chemical vapor deposition

Abstract

Gadolinium zirconate (GZ) is a promising candidate for next-generation thermal barrier coating (TBC) materials. Its corrosion resistance against calcium-magnesium-alumino-silicate (CMAS) needs to be further increased for enhancing its in-service life. As the Gd element plays an important role in the CMAS resistance, three GZ coatings (GZ-0.75, GZ-1.0, and GZ-1.2) with different Gd/Zr atomic ratios are designed and deposited by laser enhanced chemical vapor deposition (LCVD) in this work. It is found that the generated Gd-apatite in GZ-1.2 would block micro-cracks inside the column structure and the inter-columnar gap more efficiently. Thus, the CMAS penetration rate (5.2 μm/h) of GZ-1.2 decreases over 27% comparing with GZ-1.0 and GZ-0.75, which is even lower than the Gd2Zr2O7 coatings fabricated by electron-beam physical vapor depositions (EB-PVDs). This work provides a feasible way to adjust the coating’s corrosion resistance and may guide the development of future coating for long in-service life.

References

  1. [1]

    Levi CG, Hutchinson JW, Vidal-Setif MH, et al. Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull 2012, 37: 932–941.

    CAS  Article  Google Scholar 

  2. [2]

    Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull 2012, 37: 891–898.

    CAS  Article  Google Scholar 

  3. [3]

    Cao XQ, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings. J Eur Ceram Soc 2004, 24: 1–10.

    CAS  Article  Google Scholar 

  4. [4]

    Vassen R, Stuke A, Stöver D. Recent developments in the field of thermal barrier coatings. J Therm Spray Technol 2009, 18: 181–186.

    CAS  Article  Google Scholar 

  5. [5]

    Chen HF, Zhang C, Liu YC, et al. Recent progress in thermal/environmental barrier coatings and their corrosion resistance. Rare Met 2020, 39: 498–512.

    CAS  Article  Google Scholar 

  6. [6]

    Craig M, Ndamka NL, Wellman RG, et al. CMAS degradation of EB-PVD TBCs: The effect of basicity. Surf Coat Technol 2015, 270: 145–153.

    CAS  Article  Google Scholar 

  7. [7]

    Wellman R, Whitman G, Nicholls JR. CMAS corrosion of EB PVD TBCs: Identifying the minimum level to initiate damage. Int J Refract Met Hard Mater 2010, 28: 124–132.

    CAS  Article  Google Scholar 

  8. [8]

    Liu B, Liu YC, Zhu CH, et al. Advances on strategies for searching for next generation thermal barrier coating materials. J Mater Sci Technol 2019, 35: 833–851.

    Article  Google Scholar 

  9. [9]

    Chen L, Yang GJ. Epitaxial growth and cracking of highly tough 7YSZ splats by thermal spray technology. J Adv Ceram 2018, 7: 17–29.

    CAS  Article  Google Scholar 

  10. [10]

    Feng J, Xiao B, Zhou R, et al. Thermal conductivity of rare earth zirconate pyrochlore from first principles. Scripta Mater 2013, 68: 727–730.

    CAS  Article  Google Scholar 

  11. [11]

    Yang L, Zhu CH, Sheng Y, et al. Investigation of mechanical and thermal properties of rare earth pyrochlore oxides by first-principles calculations. J Am Ceram Soc 2019, 102: 2830–2840.

    CAS  Google Scholar 

  12. [12]

    Lehmann H, Pitzer D, Pracht G, et al. Thermal conductivity and thermal expansion coefficients of the lanthanum rareearth- element zirconate system. J Am Ceram Soc 2003, 86: 1338–1344.

    CAS  Article  Google Scholar 

  13. [13]

    Peng L, Zhang KB, He ZS, et al. Self-propagating high-temperature synthesis of ZrO2 incorporated Gd2Ti2O7 pyrochlore. J Adv Ceram 2018, 7: 41–49.

    CAS  Article  Google Scholar 

  14. [14]

    Michel D, Y Jorba MP, Collongues R. Study by Raman spectroscopy of order-disorder phenomena occurring in some binary oxides with fluorite-related structures. J Raman Spectrosc 1976, 5: 163–180.

    CAS  Article  Google Scholar 

  15. [15]

    Li F, Zhou L, Liu JX, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. J Adv Ceram 2019, 8: 576–582.

    Article  CAS  Google Scholar 

  16. [16]

    Mao WG, Wang YJ, Shi J, et al. Bending fracture behavior of freestanding (Gd0.9Yb0.1)2Zr2O7 coatings by using digital image correlation and FEM simulation with 3D geometrical reconstruction. J Adv Ceram 2019, 8: 564–575.

    CAS  Article  Google Scholar 

  17. [17]

    Liu B, Wang JY, Li FZ, et al. Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore. Acta Mater 2010, 58: 4369–4377.

    CAS  Article  Google Scholar 

  18. [18]

    Liu B, Wang JY, Zhou YC, et al. Theoretical elastic stiffness, structure stability and thermal conductivity of La2Zr2O7 pyrochlore, Acta Mater 2007, 55: 2949–2957.

    CAS  Article  Google Scholar 

  19. [19]

    Wu J, Wei XZ, Padture NP, et al. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J Am Ceram Soc 2002, 85: 3031–3035.

    CAS  Article  Google Scholar 

  20. [20]

    Padture NP. Thermal barrier coatings for gas-turbine engine applications. Science 2002, 296: 280–284.

    CAS  Article  Google Scholar 

  21. [21]

    Krämer S, Yang J, Levi CG. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts. J Am Ceram Soc 2008, 91: 576–583.

    Article  CAS  Google Scholar 

  22. [22]

    Krämer S, Yang J, Levi CG, et al. Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS) deposits. J Am Ceram Soc 2006, 89: 3167–3175.

    Article  CAS  Google Scholar 

  23. [23]

    Stanek CR, Minervini L, Grimes RW. Nonstoichiometry in A2B2O7 pyrochlores. J Am Ceram Soc 2002, 85: 2792–2798.

    CAS  Article  Google Scholar 

  24. [24]

    Wuensch BJ, Eberman KW. Order-disorder phenomena in A2B2O7 pyrochlore oxides. JOM 2000, 52: 19–21.

    CAS  Article  Google Scholar 

  25. [25]

    Scheetz BE, White WB. Characterization of anion disorder in zirconate A2B2O7 compounds by Raman spectroscopy. J Am Ceram Soc 1979, 62: 468–470.

    CAS  Article  Google Scholar 

  26. [26]

    Cao XQ, Vassen R, Jungen W, et al. Thermal stability of lanthanum zirconate plasma-sprayed coating. J Am Ceram Soc 2001, 84: 2086–2090.

    CAS  Article  Google Scholar 

  27. [27]

    Pannetier J. Energie electrostatique des reseaux pyrochlore. J Phys Chem Solids 1973, 34: 583–589.

    CAS  Article  Google Scholar 

  28. [28]

    Mauer G, Schlegel N, Guignard A, et al. Plasma spraying of ceramics with particular difficulties in processing. J Therm Spray Technol 2015, 24: 30–37.

    CAS  Article  Google Scholar 

  29. [29]

    Mauer G, Sebold D, Vaßen R, et al. Improving atmospheric plasma spraying of zirconate thermal barrier coatings based on particle diagnostics. J Therm Spray Technol 2012, 21: 363–371.

    CAS  Article  Google Scholar 

  30. [30]

    Schmitt MP, Stokes JL, Gorin BL, et al. Effect of Gd content on mechanical properties and erosion durability of sub-stoichiometric Gd2Zr2O7. Surf Coat Technol 2017, 313: 177–183.

    CAS  Article  Google Scholar 

  31. [31]

    Duty C, Jean D, Lackey WJ. Laser chemical vapour deposition: Materials, modelling, and process control. Int Mater Rev 2001, 46: 271–287.

    CAS  Article  Google Scholar 

  32. [32]

    Goto T, Kimura T. High-speed oxide coating by laser chemical vapor deposition and their nano-structure. Thin Solid Films 2006, 515: 46–52.

    CAS  Article  Google Scholar 

  33. [33]

    Yang G, Wang DJ, Zhang C, et al. Fabrication of gadolinium zirconate films by laser CVD. Ceram Int 2019, 45: 4926–4933.

    CAS  Article  Google Scholar 

  34. [34]

    Wang L, Guo L, Li ZM, et al. Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate (CMAS) attack. Ceram Int 2015, 41: 11662–11669.

    CAS  Article  Google Scholar 

  35. [35]

    Cai Y, Coyle TW, Azimi G, et al. Superhydrophobic ceramic coatings by solution precursor plasma spray. Sci Rep 2016, 6: 24670.

    CAS  Article  Google Scholar 

  36. [36]

    Algenaid W, Ganvir A, Calinas RF, et al. Influence of microstructure on the erosion behaviour of suspension plasma sprayed thermal barrier coatings. Surf Coat Technol 2019, 375: 86–99.

    CAS  Article  Google Scholar 

  37. [37]

    Zhou FF, Xu LP, Deng CM, et al. Nanomechanical characterization of nanostructured La2(Zr0.75Ce0.25)2O7 thermal barrier coatings by nanoindentation. Appl Surf Sci 2020, 505: 144585.

    CAS  Article  Google Scholar 

  38. [38]

    Guo L, Zhang Y, Ye FX. Phase structure evolution and thermo-physical properties of nonstoichiometry Nd2-xZr2+xO7+x/2 pyrochlore ceramics. J Am Ceram Soc 2015, 98: 1013–1018.

    CAS  Article  Google Scholar 

  39. [39]

    Zhao JL, Liu YC, Fan Y, et al. Native point defects and oxygen migration of rare earth zirconate and stannate pyrochlores. J Mater Sci Technol 2021, 73: 23–30.

    Article  Google Scholar 

  40. [40]

    Subramanian MA, Aravamudan G, Subba Rao GV. Oxide pyrochlores-A review. Prog Solid State Chem 1983, 15: 55–143.

    CAS  Article  Google Scholar 

  41. [41]

    Mechnich P, Braue W. Volcanic ash-induced decomposition of EB-PVD Gd2Zr2O7 thermal barrier coatings to Gd-oxyapatite, zircon, and Gd, Fe-zirconolite. J Am Ceram Soc 2013, 96: 1958–1965.

    CAS  Article  Google Scholar 

  42. [42]

    Zhang CG, Zhao JL, Yang L, et al. Preparation and corrosion resistance of nonstoichiometric lanthanum zirconate coatings. J Eur Ceram Soc 2020, 40: 3122–3128.

    CAS  Article  Google Scholar 

  43. [43]

    Drexler JM, Gledhill AD, Shinoda K, et al. Jet engine coatings for resisting volcanic ash damage. Adv Mater 2011, 23: 2419–2424.

    CAS  Article  Google Scholar 

  44. [44]

    Zhu CH, Liu YC, Wang DJ, et al. Improved resistance of lanthanum zirconate coatings to calcium-magnesium-alumina-silicate corrosion through composition tailoring. Ceram Int 2018, 44: 13908–13915.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shanghai (No. 20ZR1419200), National Natural Science Foundation of China (Nos. 52072232 and 52072231), and the Program for Professor of Special Appointment (Eastern Scholar) by Shanghai Municipal Education Commission (No. TP2015040).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Fan, Y., Zhao, J. et al. Corrosion resistance of non-stoichiometric gadolinium zirconate fabricated by laser-enhanced chemical vapor deposition. J Adv Ceram 10, 520–528 (2021). https://doi.org/10.1007/s40145-020-0454-x

Download citation

Keywords

  • thermal barrier coating (TBC)
  • gadolinium zirconate (GZ)
  • nonstoichiometry
  • corrosion resistance